Finite element modeling of residual stress distribution in solid hardened cylindrical samples and samples with semicircular notch
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 72-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a method for solving the problem of the distribution of residual stresses in a continuous surface hardened cylindrical samples and samples with a semicircular notch based on the finite element method. As the initial information the experimentally determined alone and / or two components of residual stresses in a hardened layer is used. By the example of a cylindrical specimen made of St. 45 and D16T steels the results of calculations performed by the proposed method are compared with the experimental data and the results of calculations by other methods.
Keywords: residual stresses distribution, cylindrical specimen, specimen with semicircular notch, finite element method.
@article{VSGTU_2011_3_a6,
     author = {M. N. Saushkin and A. Yu. Kurov},
     title = {Finite element modeling of residual stress distribution in solid hardened cylindrical samples and samples with  semicircular notch},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {72--78},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a6/}
}
TY  - JOUR
AU  - M. N. Saushkin
AU  - A. Yu. Kurov
TI  - Finite element modeling of residual stress distribution in solid hardened cylindrical samples and samples with  semicircular notch
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 72
EP  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a6/
LA  - ru
ID  - VSGTU_2011_3_a6
ER  - 
%0 Journal Article
%A M. N. Saushkin
%A A. Yu. Kurov
%T Finite element modeling of residual stress distribution in solid hardened cylindrical samples and samples with  semicircular notch
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 72-78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a6/
%G ru
%F VSGTU_2011_3_a6
M. N. Saushkin; A. Yu. Kurov. Finite element modeling of residual stress distribution in solid hardened cylindrical samples and samples with  semicircular notch. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 72-78. http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a6/

[1] Kravchenko B. A., Krutsilo V. G., Gutman G. N., Thermoplastic hardening is reserve for increasing the strength and reliability of the machines, SamGTU, Samara, 2000, 215 pp.

[2] Miftakhov A. A., Mazein P. G., “Modeling of residual stresses in hydro-shot-blasting processing”, Izvest. Chelyabin. Nauchn. Centra UrO RAN, 2006, no. 4(34), 38–42

[3] Vakulyuk V. S. Sazanov V. P. Filippov A. A. Mamedov A. I., “Modeling of small areas by the length hardening for cylindrical products”, Proceedings of the Seventh All-Russian Conference with international participation. Part 1, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2010, 87–90

[4] Pavlov V. F. Stolyarov A. K. Vakulyuk V. S. Kirpichev V. A., Residual stresses calculation in products with stress concentrators on the initial deformation, SNC RAN, Samara, 2008, 124 pp. | Zbl

[5] Blyumenshtejn V. Yu., Makhalov M. S., “Computational model of residual stresses of the hardened surface layer at dimensional joint runningin”, Vestn. Kuzbas. Gos. Tekhn. Un-ta, 2008, no. 5, 50–58

[6] Saushkin M. N., Radchenko V. P., Pavlov V. F., “Method of calculating the fields of residual stresses and plastic strains in cylindrical specimens with allowance for surface hardening anisotropy”, J. Appl. Mech. Tech. Phys., 52:2 (2011), 303–310 | DOI | Zbl

[7] Ivanov S. I., Shatunov M. P., Pavlov V. F., “Effect of residual stresses on the fatigue of noth specimens”, Problems of aircraft structure element strength. Issue 1, KuAI, Kuibyshev, 1974, 88–95