Algorithm of motion on the parameter of rigidity in stability problem on the border of Winkler's mediums
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 62-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

To solve the stability problem of one-dimensional elements of construction on the border of different elastic ambiences the algorithm of motion on the parameter of one ambience is suggested. Evolution of triple half-wave eigenform of longitudinal compressed rod is studied according to S. P. Timoshenko model's using boundary conditions of articulate and rigid fixing.
Keywords: stability, spectral problem, brute-force search.
@article{VSGTU_2011_3_a5,
     author = {E. I. Mikhailovskii and E. V. Tulubenskaya},
     title = {Algorithm of motion on the parameter of rigidity in stability problem on the border of {Winkler's} mediums},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {62--71},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a5/}
}
TY  - JOUR
AU  - E. I. Mikhailovskii
AU  - E. V. Tulubenskaya
TI  - Algorithm of motion on the parameter of rigidity in stability problem on the border of Winkler's mediums
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 62
EP  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a5/
LA  - ru
ID  - VSGTU_2011_3_a5
ER  - 
%0 Journal Article
%A E. I. Mikhailovskii
%A E. V. Tulubenskaya
%T Algorithm of motion on the parameter of rigidity in stability problem on the border of Winkler's mediums
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 62-71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a5/
%G ru
%F VSGTU_2011_3_a5
E. I. Mikhailovskii; E. V. Tulubenskaya. Algorithm of motion on the parameter of rigidity in stability problem on the border of Winkler's mediums. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 62-71. http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a5/

[1] Mikhailovskii E. I., Tulubenskaya E. V., “An algorithm for the local exhaustive search for alternatives in an essentially non-linear eigenvalue problem”, J. Appl. Math. Mech., 74:2 (2010), 214–222 | DOI | MR

[2] Vol'mir A. S., Stability of Deformable Systems, Nauka, Moscow, 1967, 984 pp.

[3] Mikhailovskii E. I., Tarasov V. N., “Constructive-nonlinear mechanics of plates and shells”, Vestn. Sykt. un-ta. Ser. 1. Mat. Meh. Inf., 2010, no. 12, 3–32