Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_3_a2, author = {A. A. Andreev and J. O. Yakovleva}, title = {The {Goursat} problem for one hyperbolic system of~the third order differential equations with two independent variables}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {35--41}, publisher = {mathdoc}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a2/} }
TY - JOUR AU - A. A. Andreev AU - J. O. Yakovleva TI - The Goursat problem for one hyperbolic system of~the third order differential equations with two independent variables JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 35 EP - 41 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a2/ LA - ru ID - VSGTU_2011_3_a2 ER -
%0 Journal Article %A A. A. Andreev %A J. O. Yakovleva %T The Goursat problem for one hyperbolic system of~the third order differential equations with two independent variables %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 35-41 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a2/ %G ru %F VSGTU_2011_3_a2
A. A. Andreev; J. O. Yakovleva. The Goursat problem for one hyperbolic system of~the third order differential equations with two independent variables. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 35-41. http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a2/
[1] Courant R., Hilbert D., Methods of mathematical physics, v. II, Partial differential equations, Interscience Publishers, New York – London, 1962, 830 pp. ; Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 831 pp. | Zbl | MR
[2] Riemann B., “Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite”, Abh. d. Gött. Ges. d. Wiss., 8 (1860), 43–68
[3] Bitsadze A. V., Some classes of partial differential equations, Nauka, Moscow, 1981, 448 pp. | MR
[4] Vekua I. N., New Methods for Solving Elliptic Equations, OGIZ, Moscow–Leningrad, 1948, 296 pp. | MR
[5] Soldatov A. P., Shkhanukov M. Kh., “Boundary value problems with A. A. Samarskiĭ's general nonlocal condition for higher-order pseudoparabolic equations”, Soviet Math. Dokl., 36:3 (1988), 507–511 | MR | Zbl
[6] Dzhokhadze O. M., “The Riemann function for higher-order hyperbolic equations and systems with dominated lower terms”, Differ. Equ., 39:10 (2003), 1440–1453 | DOI | MR | Zbl
[7] Zikirov O. S., “Local and nonlocal boundary-value problems for third-order hyperbolic equations”, J. Math. Sci., 175:1, 104–123 | DOI | MR | Zbl
[8] Zhegalov V. I., Mironov A. N., “Cauchy problems for two partial differential equations”, Russian Math. (Iz. VUZ), 46:5 (2002), 21–28 | MR | Zbl
[9] Zhegalov V. I., Utkina E. A., “Pseudoparabolic equation of the third order”, Russian Math. (Iz. VUZ), 43:10 (1999), 70–73 | MR | Zbl
[10] Gantmakher F. R., Theory of matrices, Nauka, Moscow, 549 pp. | MR | Zbl
[11] Andreev A. A., Construction of elementary solutions and solution of Cauchy problem for equations and hyperbolic systems of equations, Ph. D. Thesis (Phys. Math.), Kuibyshev, 1981, 100 pp.
[12] Andreev A. A., “On some applications of associated hypergeometric functions”, Differential Equations (Mathematical Physics), Kuibyshev, 1984, 8–9
[13] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1953, 302 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t, v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973, 296 pp. | Zbl
[14] Andreev A. A., Ogorodnikov E. N., “Matrix integro-differential operators and their application”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 1999, no. 7, 27–37 | DOI
[15] Koshlyakov N. S., Gliner É. B., Smirnov M. M., The differential equations of mathematical physics, Gosudarstv. Izd-vo. Fiz.-Mat. Lit., Moscow, 1962, 767 pp. | MR