The control problem for the system of telegraph equations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 162-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary control problem for the system of telegraph equations was considered in the rectangular region. The control functions transferring the process described by this system from the given initial state to the final state were constructed using the Riemann method. The ambiguity of the obtained controls consists in the way the conditions are continued in the initial line.
Keywords: the system of telegraph equations, boundary control, Riemann method.
@article{VSGTU_2011_3_a17,
     author = {E. A. Kozlova},
     title = {The control problem for the system of telegraph equations},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {162--166},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a17/}
}
TY  - JOUR
AU  - E. A. Kozlova
TI  - The control problem for the system of telegraph equations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 162
EP  - 166
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a17/
LA  - ru
ID  - VSGTU_2011_3_a17
ER  - 
%0 Journal Article
%A E. A. Kozlova
%T The control problem for the system of telegraph equations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 162-166
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a17/
%G ru
%F VSGTU_2011_3_a17
E. A. Kozlova. The control problem for the system of telegraph equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 162-166. http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a17/

[1] Il'in V. A., “Boundary control of oscillations on two ends in terms of the generalized solution of the wave equation with finite energy”, Differ. Equ., 36:11 (2000), 1659–1675 | DOI | MR | Zbl

[2] Il'in V. A., Moiseev E. I., “Boundary control at one endpoint of a process described by a telegraph equation”, Dokl. RAN, 387:5 (2002), 600–603 | MR | Zbl

[3] Il'in V. A., Moiseev E. I., “Boundary control at two endpoints of a process described by the telegraph equation”, Dokl. RAN, 394:2 (2004), 154–158 | MR | Zbl

[4] Borovskikh A. V., “Formulas of boundary control of an inhomogeneous string. I”, Differ. Equ., 43:1 (2007), 69–95 | DOI | MR | Zbl

[5] Bitsadze A. V., Some classes of partial differential equations, Nauka, Moscow, 1981, 448 pp. | MR | Zbl

[6] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1953, 302 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t, v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973, 296 pp. | MR | Zbl | MR

[7] Gantmakher F. R., Theory of matrices, Nauka, Moscow, 549 pp. | MR | Zbl