Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_3_a11, author = {A. Yu. Samarin}, title = {Natural space of the micro-object}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {117--128}, publisher = {mathdoc}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a11/} }
A. Yu. Samarin. Natural space of the micro-object. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 117-128. http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a11/
[1] von Neumann J., Mathematical Foundations of Quantum Mechanics, Princeton Landmarks in Mathematics and Physics, Princeton University Press, Princeton, New Jersy, 1996, 464 pp. ; fon Neiman I., Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964, 368 pp. | MR | Zbl | MR
[2] Griffits R. B., Consistent quantum theory, Cambridge university press, Cambridge, 2002, 391 pp. | MR
[3] Hartle G. B., “Spacetime quantum mechanics and the quantum mechanics of spacetime”, Gravitation and Quantizations, Proceedings of the 1992 Les Houches Summer School (6 July – 1 Aug., 1992), eds. B. Julia, J. Zinn–Justin, North Holland, Amsterdam, 1995, 285–480, arXiv: gr-qc/9304006 | MR | Zbl
[4] Gell–Mann M., Hartle J. B., “Classical equations for quantum systems”, Phys. Rev. D., 47:8 (1993), 3345–3382 | DOI | MR
[5] Feynman R. P., Hibbs A. R., Quantum Mechanics and Path Integrals, McGraw-Hill Companies, New York, 1965, 365 pp. ; Feinman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968, 382 pp. | Zbl
[6] Zinn–Justin J., Path Integrals in Quantum Mechanics, Oxford University Press, Oxford, 2004, 332 pp. ; Zinn–Zhyusten Zh., Kontinualnyi integral v kvantovoi mekhanike, Fizmatlit, M., 2006, 360 pp. | MR
[7] Samarin A. Yu., “Description of discrete spectrum states transition processes”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2(19) (2009), 226–230 | DOI
[8] Samarin A. Yu., “Wave equation of discrete spectrum states transition processes”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 188–196 | DOI
[9] Landau L. D. Lifshitz E. M., Quantum Mechanics (Non-Relativistic Theory), Course of Theoretical Physics, v. 3, Pergamon Press, New York, 1977, 689 pp.
[10] Kac M., Probability and Related Topics in Physical Sciences, Lectures in Applied Mathematics Series., 1.1, American Mathematical Society, 1957, 266 pp. ; Kats M., Veroyatnost i smezhnye voprosy v fizike, Mir, M., 1965, 407 pp. | MR | Zbl
[11] Kolmogorov A. N., Probability theory and mathematical statistics. Selected works, ed. Yu. V. Prokhorov, Nauka, Moscow, 1986, 535 pp. | MR
[12] Bell J. S., “On the Einstein Podolsky Rosen Paradox”, Physics, 1:3 (1964), 195–200
[13] Reid M. D., Drummond P. D., “Colloquium: The Einstein–Podolsky–Rosen paradox: From concepts to applications”, Rev. Mod. Phys., 81:4 (2009), 1727–1751 | DOI | MR | Zbl
[14] Aspect A., Grangier P., Roger G., “Experimental Realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A New Violation of Bell's Inequalities”, Phys. Rev. Lett., 49:1 (1982), 91–94 | DOI | MR
[15] Aspect A., Dalibard J., Roger G., “Experimental Test of Bell's Inequalities Using Time-Varying Analyzers”, Phys. Rev. Lett., 49:25 (1982), 1804–1807 | DOI | MR