On one non-local problem for axisymmetric Helmholtz equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 26-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Non-local boundary problem for the axisymmetric Helmholtz equation is explored. The uniqueness of the solution is proved by the spectral method. The conditions of solvability are found. The solution of the problem is constructed in the form of the biorthogonal series.
Keywords: Helmholtz equation, Bessel functions, non-local boundary problem, Riesz basis.
@article{VSGTU_2011_3_a1,
     author = {A. A. Abashkin},
     title = {On one non-local problem for axisymmetric {Helmholtz} equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {26--34},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a1/}
}
TY  - JOUR
AU  - A. A. Abashkin
TI  - On one non-local problem for axisymmetric Helmholtz equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 26
EP  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a1/
LA  - ru
ID  - VSGTU_2011_3_a1
ER  - 
%0 Journal Article
%A A. A. Abashkin
%T On one non-local problem for axisymmetric Helmholtz equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 26-34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a1/
%G ru
%F VSGTU_2011_3_a1
A. A. Abashkin. On one non-local problem for axisymmetric Helmholtz equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 26-34. http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a1/

[1] Lerner M. E., Repin O. A., “Nonlocal boundary value problems in a vertical half-strip for a generalized axisymmetric Helmholtz equation”, Differ. Equ., 37:11 (2001), 1640–1642 | DOI | MR | Zbl

[2] Moiseev E. I., “Solvability of a nonlocal boundary value problem”, Differ. Equ., 37:11 (2001), 1643–1646 | DOI | MR | Zbl

[3] Valitov I. R., “Solution of a nonlocal problem for a elliptic equation by the spectral method”, The Spectral Theory of Differential Operators and Related Problems, Proc. of the International Scientific Conference, v. 1, Gilem, Ufa, 2003, 100–110

[4] Sabitov K. B., Sidorenko O. G., “On the unique solvability of nonlocal problems for degenerate elliptic equations by the spectral method”, The Spectral Theory of Differential Operators and Related Problems, Proc. of the International Scientific Conference, v. 1, Gilem, Ufa, 2003, 213–219

[5] Marichev O. I. Kilbas A. A.; Repin O. A., Boundary value problems for partial differential equations with discontinuous coefficients, SGÉU, Samara, 2008, 275 pp.

[6] Pleschinskiy N. B., Models and methods of waveguide electrodynamics, KGU, Kazan, 2008, 103 pp.

[7] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1953, 302 pp.; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974, 295 pp. | MR

[8] Olver F. W. J., Asymptotics and special functions, Computer Science and Applied Mathematics, XVI, Academic Press, New York – London, 1974, 572 pp. ; Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990, 528 \pagebreak pp. | MR | MR | Zbl

[9] Moiseev E. I., “The solution of a nonlocal boundary value problem by the spectral method”, Differ. Equ., 35:8 (1999), 1105–1112 | MR | Zbl