On some conjugation problems of parabolic and hyperbolic equations with integro-differential conditions on the separating boundary
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 8-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-valued solvability of the conjugation problems of parabolic and hyperbolic equations in finite domains was proved by the method of equivalent reduction to Volterra integral equation of the second kind.
Keywords: Volterra integral equation, conjugation problems, Bessel functions.
@article{VSGTU_2011_3_a0,
     author = {V. A. Eleev and A. Kh. Balkizova},
     title = {On some conjugation problems of parabolic and hyperbolic equations with integro-differential conditions on the separating boundary},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {8--25},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a0/}
}
TY  - JOUR
AU  - V. A. Eleev
AU  - A. Kh. Balkizova
TI  - On some conjugation problems of parabolic and hyperbolic equations with integro-differential conditions on the separating boundary
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 8
EP  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a0/
LA  - ru
ID  - VSGTU_2011_3_a0
ER  - 
%0 Journal Article
%A V. A. Eleev
%A A. Kh. Balkizova
%T On some conjugation problems of parabolic and hyperbolic equations with integro-differential conditions on the separating boundary
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 8-25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a0/
%G ru
%F VSGTU_2011_3_a0
V. A. Eleev; A. Kh. Balkizova. On some conjugation problems of parabolic and hyperbolic equations with integro-differential conditions on the separating boundary. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2011), pp. 8-25. http://geodesic.mathdoc.fr/item/VSGTU_2011_3_a0/

[1] Gel'fand I. M., “Some questions of analysis and differential equations”, Am. Math. Soc., Transl., II. Ser., 26 (1963), 201–219 | MR | MR | Zbl | Zbl

[2] Leybenzon L. L., Motion of natural liquids and gases in porous medium, OGIZ, Gostekhizdat, Moscow, Leningrad, 1947, 244 pp. | MR

[3] Tikhonov A. N., Samarskii A. A., Equations of Mathematical Physics, Pergamon Press, Oxford, 1963, 784 pp. | MR | MR | Zbl

[4] Aziz H., Settari E., Mathematical modeling of reservoir systems, Nedra, Moscow, 1982, 407 pp.

[5] Akilov J. A., Non-stationary motions of viscoelastic fluids, Fan, Tashkent, 1982, 104 pp.

[6] Korzyuk V. I., Lemeshevskiy S. V., Matus P. P., “Solvability of a conjugation problem for hyperbolic and parabolic equations with integro-differential conditions on the separation boundary”, Tr. in-ta mat. NAN Belarusi, 6 (2000), 100–108 | Zbl

[7] Shashkov A. G., Systematic Structural Analysis of Heat Transfer Processes and its Application, Energoizdat, Moscow, 1983, 279 pp.

[8] Chudnovskiy A. F., Thermophysics of Soils, Moscow, 1976, 352 pp.

[9] Struchina G. M., “A problem of conjugation of two equations”, Inzherno-Fizicheskii Zhurnal, 4:11 (1961), 99–104

[10] Zolina L. A., “On a boundary value problem for a model equation of hyperbolo-parabolic type”, U.S.S.R. Comput. Math. Math. Phys., 6:6 (1966), 63–78 | DOI | MR | Zbl

[11] Abrakhmanov M. A., “On one conjugation problem for parabolic type equations”, Izvest. AN KazSSR. Ser. fiz.-mat. nauki, 5 (1967), 87–93 | Zbl

[12] Ostrovskiy E. A., Differents. uravneniya, 3:6 (1967), 965–979 | MR

[13] Korzyuk V. I., “The problem of conjugate equations of hyperbolic and parabolic type”, Differents. uravneniya, 1968, no. 4, 1855–1866

[14] Dzhuraev T. D., Boundary value problems for equations of mixed and mixed-composite type, Fan, Tashkent, 1979, 238 pp. | MR | Zbl

[15] Dzhuraev T. D., Sopuev A. S., Mamazhanov M., Boundary value problem for equations of hyperbolic-parabolic type, Fan, Tashkent, 1986, 220 pp. | MR | Zbl

[16] Bazarov D. K., For the theory of local and nonlocal boundary value problems for equations of mixed and mixed-composite type, Dr. Sci. Thesis, Ashgabat, 1991, 272 pp.

[17] Eleev V. A., Boundary value problems for equations of mixed hyperbolic-parabolic type, Dr. Sci. Thesis, Kiev, 1995, 266 pp.

[18] Repin O. A., Boundary value problems for equations of hyperbolic and mixed types and fractional integro-differentiation, Dr. Sci. Thesis, Minsk, 1998, 220 pp.

[19] Sabitov K. B., Some problems in qualitative and spectral theory of mixed-type equations, Dr. Sci. Thesis, Moscow, 1991, 313 pp.

[20] Nakhusheva V. A., “On one mathematical model of heat transfer in a mixed media with ideal contact”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2006, no. 42, 11–34 | DOI

[21] Eleev V. A., “Boundary-value problems for a mixed hyperbolic-parabolic equation”, Differ. Equations, 24:4 (1988), 437–443 | MR | Zbl

[22] Myshkis A. D., Mathematics for technical universities, Special courses, Nauka, Moscow, 1971, 632 pp. | Zbl

[23] Salakhitdinov M. S., Urinov A. K., Boundary value problems for the mixed type equations with spectral parameter, Fan, Tashkent, 1997, 166 pp. | MR | Zbl

[24] Polozhiy G. P., Equations of mathematical physics, Vyssh. shk., Moscow, 1964, 559 pp. | MR