Multipoint moment functions of structural properties for polydisperse composites
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 74-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stochastic boundary-value problem of elasticity theory for two-phase polydisperse composites is stated. The solution method with using high order moment functions is described. Algorithm of synthesis of $n$-order moment functions for 3D structures is presented. Approximating expression for moment functions is suggested. Examples of calculation of high-order moment functions for polydisperse structures are given.
Mots-clés : composites
Keywords: moment functions, random polydisperse structure, 3D models, boundary-value problem, approximation.
@article{VSGTU_2011_2_a8,
     author = {M. A. Tashkinov},
     title = {Multipoint moment functions of structural properties for polydisperse composites},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {74--82},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a8/}
}
TY  - JOUR
AU  - M. A. Tashkinov
TI  - Multipoint moment functions of structural properties for polydisperse composites
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 74
EP  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a8/
LA  - ru
ID  - VSGTU_2011_2_a8
ER  - 
%0 Journal Article
%A M. A. Tashkinov
%T Multipoint moment functions of structural properties for polydisperse composites
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 74-82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a8/
%G ru
%F VSGTU_2011_2_a8
M. A. Tashkinov. Multipoint moment functions of structural properties for polydisperse composites. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 74-82. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a8/

[1] Buryachenko V. A., Micromehcanics of heterogenous materials, Springer-Verlag, New York, 2007, 687 pp. | MR | Zbl

[2] Lifshits I. M., Rozentsveig L. N., “Theory of elastic properties of polycrystals”, ZhETF, 16:11 (1946), 967–980

[3] Volkov S. D., Stavrov V. P., Statistical mechanics of composite materials, BGU, Minsk, 1978, 206 pp.

[4] Lomakin V. A., Statistical problems of the mechanics of solid deformable bodies, Nauka, Moscow, 1970, 139 pp.

[5] Shermergor T. D., Theory of elasticity of microheterogeneous media, Nauka, Moscow, 1977, 400 pp.

[6] Sokolkin Yu. V., Tashkinov A. A., Mechanics of deformation and dracture of structurally inhomogeneous bodies, Nauka, Moscow, 1984, 116 pp.

[7] Pankov A. A., Statistical mechanics of piezocomposites, PGTU, Perm, 2009, 480 pp.

[8] Tashkinov M. A., Vil'deman V. E., Mikhailova N. V., “Method of successive approximations in a stochastic boundary-value problem in the elasticity theory of structurally heterogeneous media”, Composites: Mechanics, Computations, Applications, An International Journal, 2:1 (2011), 21–37 | DOI

[9] Christensen R. M., Mechanics of composite materials, Willey-Interscience, New York, 1979, 348 pp.; Kristensen R., Vvedenie v mekhaniku kompozitov, Mir, M., 1984, 336 pp.