On some properties of equal-stress problem solution reinforcement bending the metal-composite plates working in~steady creep conditions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 62-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solution of a stress condition of stochastic heterogeneous plate problem was obtained on the basis of statistic linearization of determinative creep equation and by using a method of spectral representation of random functions. Stochasticity is introduced into determinative creep equation by random function of two variables. It was proved, that stochastic nonhomogeneities of material can lead to significant fluctuations of stress fields.
Mots-clés : metal-composites
Keywords: equal-stress reinforcement, bending plates, steady creep, properties of solution, qualitative analysis.
@article{VSGTU_2011_2_a7,
     author = {A. P. Yankovskii},
     title = {On some properties of  equal-stress problem solution  reinforcement bending the metal-composite plates working in~steady creep conditions},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {62--73},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a7/}
}
TY  - JOUR
AU  - A. P. Yankovskii
TI  - On some properties of  equal-stress problem solution  reinforcement bending the metal-composite plates working in~steady creep conditions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 62
EP  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a7/
LA  - ru
ID  - VSGTU_2011_2_a7
ER  - 
%0 Journal Article
%A A. P. Yankovskii
%T On some properties of  equal-stress problem solution  reinforcement bending the metal-composite plates working in~steady creep conditions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 62-73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a7/
%G ru
%F VSGTU_2011_2_a7
A. P. Yankovskii. On some properties of  equal-stress problem solution  reinforcement bending the metal-composite plates working in~steady creep conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 62-73. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a7/

[1] Kachanov L. M., Theory of creep, Nat. Lending Lib., Boston, MA, 1958, 430 pp.

[2] Yankovskii A. P., “Equal-stress reinforcement the ring bending metal-composites plates working in conditions of steady creep”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), 42–54 | DOI

[3] Nemirovskii Yu. V., Yankovskii A. P., “The steady creep layer-fibrous bendings metal-composites plates”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2008, no. 2(17), 66–76 | DOI

[4] Nemirovskii Yu. V., Yankovskii A. P., “On some features of the equations of shells reinforced with fibres of constant crosssection”, Mekhanika Kompozitsionnykh Materialov i Konstrukciy, 3:2 (1997), 15–39

[5] Petrovskiy I. G., Lectures on partial differential equations, Fizmatlit, Moscow, 1961, 400 pp. | MR

[6] Dzhuraev T. D., Boundary value problems for equations of mixed and mixed-composite types, Fan, Tashkent, 1979, 239 pp. | MR | Zbl

[7] Nemirovskii Yu. V., Yankovskii A. P., “On some properties of solutions of plane thermoelastic problems of rational reinforcement of composite constructions.”, J. Appl. Math. Mech., 61:2 (1997), 301–309 | DOI | MR

[8] Fikhtengol'ts G. M., A course of differential and integral calculus, v. 1, Fizmatgiz, Leningrad, 1958, 608 pp. | Zbl