Stability of disk motion on the rheological ground
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 306-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a new mathematical model of the disk motion on the basis of the Kelvin body is constructed. Taking the hypothesis of a point contact with the drive base, a system of differential equations of the disk motion is derived in the form of modified Chaplygin equations involving generalized rheological response force, as well as three stationary constraint equations, two of which are nonholonomic. The analysis of the drive permanent movements stability was carried out. It is shown that the rectilinear motion of the disk and spinning around a vertical diameter are unstable in relation to the nutation angle $\theta$.
Keywords: nonholonomic connection, relaxation curve
Mots-clés : Mikhailov hodograph.
@article{VSGTU_2011_2_a38,
     author = {G. V. Pavlov and M. A. Kal'mova and E. S. Vronskaya and I. N. Ignatov},
     title = {Stability of disk motion on the rheological ground},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {306--312},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a38/}
}
TY  - JOUR
AU  - G. V. Pavlov
AU  - M. A. Kal'mova
AU  - E. S. Vronskaya
AU  - I. N. Ignatov
TI  - Stability of disk motion on the rheological ground
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 306
EP  - 312
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a38/
LA  - ru
ID  - VSGTU_2011_2_a38
ER  - 
%0 Journal Article
%A G. V. Pavlov
%A M. A. Kal'mova
%A E. S. Vronskaya
%A I. N. Ignatov
%T Stability of disk motion on the rheological ground
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 306-312
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a38/
%G ru
%F VSGTU_2011_2_a38
G. V. Pavlov; M. A. Kal'mova; E. S. Vronskaya; I. N. Ignatov. Stability of disk motion on the rheological ground. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 306-312. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a38/

[1] Karapetyan A. V., Rumyancev V. V., “Stability of conservative and dissipative systems”, Applied Mechanics. Soviet Rewiews, 1, Stability and Analytical Mechanics, Hemisphere, New York, 3–144 pp.

[2] Pavlov G. V., Ignatov I. N., “Dynamics of the disc on a viscoelastic foundation”, III Mezhdunarodn. nauchn.-tehnich. konf-tsiya, PGU, Penza, 2008, 222–225

[3] Pavlov G. V., Kal'mova M. A., “Contact line influence effect of viscoelastic sub-base on the disk dynamics”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2(19) (2009), 186–192 | DOI

[4] Rabotnov Yu. N., Elements of continuum mechanics of materials with memory, Nauka, Moscow, 1977, 383 pp. | MR

[5] Neimark Yu. I., Fufaev N. A., Dynamics of nonholonomic systems, Nauka, Moscow, 1967, 483 pp.

[6] Vil'ke V. G., “The theory of the rolling of a rigid wheel on a deformable rail”, Vestn. Mosk. univ. Ser. 1, Mat., Mekh., 1997, no. 1, 48–55 | MR | Zbl

[7] Vil'ke V. G., “Rolling of a viscoelastic wheel”, Izv. RAN. MTT, 1993, no. 6, 11–15

[8] Ishlinskii A. Yu., Mechanics: ideas, problems, applications, Nauka, Moscow, 1985, 623 pp.

[9] Pavlov G. V., Borodin V. S., Alimov A. V., “Dynamics of a rigid disk on a beam on viscoelastic ground”, Vestn. Sam. gos. un-ta. Ectestvennonauchn. ser., 2007, no. 9/1(59), 165–171

[10] Merkin D. R., Introduction to the theory of the stability of motion, Nauka, Moscow, 1987, 304 pp. | MR | Zbl