On wavenumbers of plane harmonic type~I thermoelastic waves of microrotation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 300-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is researching the propagation of plane harmonic GNI-thermoelastic waves of microrotation by the coupled system of linear micropolar equation of motion and heat transport. The study incorporates the investigation of weak discontinuities propagating in CTMPE media by the Thomas–Hadamard technique.
Keywords: micropolar GNI-thermoelasticity, plane wave, wavenumber.
@article{VSGTU_2011_2_a37,
     author = {L. N. Kosygina},
     title = {On wavenumbers of plane harmonic {type~I} thermoelastic waves of microrotation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {300--305},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a37/}
}
TY  - JOUR
AU  - L. N. Kosygina
TI  - On wavenumbers of plane harmonic type~I thermoelastic waves of microrotation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 300
EP  - 305
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a37/
LA  - ru
ID  - VSGTU_2011_2_a37
ER  - 
%0 Journal Article
%A L. N. Kosygina
%T On wavenumbers of plane harmonic type~I thermoelastic waves of microrotation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 300-305
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a37/
%G ru
%F VSGTU_2011_2_a37
L. N. Kosygina. On wavenumbers of plane harmonic type~I thermoelastic waves of microrotation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 300-305. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a37/

[1] Eringen A. C., Microcontinuum Field Theories, v. I, Foundations and Solids, Springer-Verlag, Berlin, Heidelberg, New-York et al, 1999, 325 pp. | MR | Zbl

[2] Nowacki W., Theory of asymmetric elasticity, Pergamon Press, Oxford, 1986, 384 pp. (Transl. from the Polish by H. Zorski) | MR | Zbl