Non-stationary problems of the dynamics of stepped section plates and rotation cylindrical shells
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 278-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

The technique of exact non-stationary dynamic calculation of compound designed systems of in steps-variable thickness a method initial parameters is offered. The settlement scheme considers displacement of median surfaces of interfaced elements. As an example calculation of base plate of a dam GES and matrices of explosive punching is resulted at pulse influence.
Keywords: non-stationary problems, method of initial parameters, plate of step section, cylindrical shells.
@article{VSGTU_2011_2_a34,
     author = {Yu. P. D'yachenko and \'E. Ya. Elenitskii and D. V. Petrov},
     title = {Non-stationary problems of the dynamics of stepped section plates and rotation cylindrical shells},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {278--288},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a34/}
}
TY  - JOUR
AU  - Yu. P. D'yachenko
AU  - É. Ya. Elenitskii
AU  - D. V. Petrov
TI  - Non-stationary problems of the dynamics of stepped section plates and rotation cylindrical shells
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 278
EP  - 288
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a34/
LA  - ru
ID  - VSGTU_2011_2_a34
ER  - 
%0 Journal Article
%A Yu. P. D'yachenko
%A É. Ya. Elenitskii
%A D. V. Petrov
%T Non-stationary problems of the dynamics of stepped section plates and rotation cylindrical shells
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 278-288
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a34/
%G ru
%F VSGTU_2011_2_a34
Yu. P. D'yachenko; É. Ya. Elenitskii; D. V. Petrov. Non-stationary problems of the dynamics of stepped section plates and rotation cylindrical shells. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 278-288. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a34/

[1] Biderman V. L., Applied Theory of mechanical vibrations, Vyssh. shk., Moscow, 1972, 416 pp. | Zbl

[2] Godunov S. K., “Numerical solution of boundary-value problems for systems of linear ordinary differential equations”, Uspekhi Mat. Nauk, 16:3(99) (1961), 171–174 | MR | Zbl

[3] Abramov A. A., “On the transfer of boundary conditions for systems of ordinary linear differential equations (a variant of the dispersive method)”, U.S.S.R. Comput. Math. Math. Phys., 1:3 (1962), 617–622 | DOI | MR | Zbl

[4] Elenitskiy É. Ya., D'yachenko Yu. P., “Free vibrations of a rectangular plate stepped section with finite shear stiffness”, Problems with free boundaries and nonlocal problems for nonlinear parabolic equations, eds. Yu. A. Mitropol'skiy, A. A. Berezovskiy, In-t Matematiki NAN Ukrainy, Kiev, 1996, 17–20 | MR

[5] D'yachenko Yu. P., “A method for computing the unsteady action on rectangular plates of stepwise varying thickness”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008, no. 2(61), 136–159 | MR | Zbl

[6] Grigolyuk E. I., Selezov I. T., Nonclassical theories of rod, plate, and shell vibrations, Results in Science and Technology. Mechanics of Deformable Solids, 5, VINITI, Moscow, 1973, 272 pp. | Zbl

[7] Dynamic calculation of structures for special actions, Designer's Handbook, eds. B. G. Korenev, I. M. Rabinovich, Stroyizdat, Moscow, 1981, 215 pp.