Functional Laplace operator on a $\mathfrak p$"=adic space and Feynman--Kac and Feynman formulas
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 251-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

Homogeneous closed PDO are constructed which are analogous to the powers of (absolute value of) infinite dimensional Laplacian and acting in Banach spaces of complex-valued functions defined on function spaces over a field of $\mathfrak p$-adic numbers. For elements of semigroups, for which these PDOs are generators, Feynman formulas and Feynman–Kac ones are obtained.
Keywords: Feynman–Kac formulas, Feynman formulas, functional Laplacian, $p$-adic analysis.
@article{VSGTU_2011_2_a30,
     author = {N. N. Shamarov},
     title = {Functional {Laplace} operator on a  $\mathfrak p$"=adic space and {Feynman--Kac} and {Feynman} formulas},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {251--259},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a30/}
}
TY  - JOUR
AU  - N. N. Shamarov
TI  - Functional Laplace operator on a  $\mathfrak p$"=adic space and Feynman--Kac and Feynman formulas
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 251
EP  - 259
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a30/
LA  - ru
ID  - VSGTU_2011_2_a30
ER  - 
%0 Journal Article
%A N. N. Shamarov
%T Functional Laplace operator on a  $\mathfrak p$"=adic space and Feynman--Kac and Feynman formulas
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 251-259
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a30/
%G ru
%F VSGTU_2011_2_a30
N. N. Shamarov. Functional Laplace operator on a  $\mathfrak p$"=adic space and Feynman--Kac and Feynman formulas. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 251-259. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a30/

[1] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adic analysis and mathematical physics, Series on Soviet and East European Mathematics, 1, World Scientific Publishing Co., Inc., River Edge, NJ, 1994, 319 pp. | MR | MR

[2] Smolyanov O. G., Shamarov N. N., Kpekpassi M., “Feynman and Feynman–Kac formulas for infinite-dimensional equations with Vladimirov operator”, Dokl. RAN, 438 (2011) | Zbl

[3] Beloshapka O. V., “Feynman formulas for an infinite dimensional $p$-adic heat type equation”, IDAQP, 14:1 (2011), 137–148 | DOI | MR | Zbl

[4] Smolyanov O. G., Shamarov N. N., “Feynman formulas and path integrals for evolution equations with the Vladimirov operator”, Proc. Steklov Inst. Math., 265 (2009), 217–228 | DOI | MR | Zbl

[5] Smolyanov O. G., “Infinite-dimensional pseudodifferential operators and Schrödinger quantization”, Sov. Math. Dokl., 25:3 (1982), 404–408 | MR | Zbl

[6] Accardi L., Smolyanov O. G., “Feynman formulas for evolution equations with Levy Laplacians on infinite-dimensional manifolds”, Doklady Mathematics, 73:2 (2006), 252–257 | DOI | MR

[7] Smolyanov O. G. Shavgulidze E. T., Continual Integrals, MGU, Moscow, 1990, 150 pp. | MR