Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_2_a3, author = {N. V. Beylina}, title = {On solvability of a inverse problem for hyperbolic equation with an integral overdetermination condition}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {34--39}, publisher = {mathdoc}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a3/} }
TY - JOUR AU - N. V. Beylina TI - On solvability of a inverse problem for hyperbolic equation with an integral overdetermination condition JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 34 EP - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a3/ LA - ru ID - VSGTU_2011_2_a3 ER -
%0 Journal Article %A N. V. Beylina %T On solvability of a inverse problem for hyperbolic equation with an integral overdetermination condition %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 34-39 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a3/ %G ru %F VSGTU_2011_2_a3
N. V. Beylina. On solvability of a inverse problem for hyperbolic equation with an integral overdetermination condition. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 34-39. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a3/
[1] Cannon J. R., Lin Y., “Determination of a control parameter in a parabolic partial differential equation”, J. Austral. Math. Soc. Ser. B, 33:2 (1991), 149–163 | DOI | MR | Zbl
[2] Cannon J. R., Lin Y., “Determination of a parameter $p(t)$ in some quasi-linear parabolic differential equations”, Inverse Problems, 4:1 (1998), 35–45 | DOI | MR
[3] Ivanchov N. I., “On the determination of the time-dependent leading coefficient in a parabolic equation”, Siberian Math. J., 39:3 (1998), 465–475 | DOI | MR | Zbl
[4] Kamynin V. L., “On the inverse problem of determining the right-hand side of a parabolic equation under an integral overdetermination condition”, Math. Notes, 77:4 (2005), 482–493 | DOI | DOI | MR | Zbl
[5] Kozhanov A. I., “Solvability of the inverse problem of finding thermal conductivity”, Siberian Math. J., 46:5 (2005), 841–856 | DOI | MR | Zbl
[6] Prilepko A. I., Kostin A. B., “On certain inverse problems for parabolic equations with final and integral observation”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 473–490 | DOI | MR | MR | Zbl
[7] Prilepko A. I., Tkachenko D. S., “Properties of solutions of a parabolic equation and the uniqueness of the solution of the inverse source problem with integral overdetermination”, Comput. Math. Math. Phys., 43:4 (2003), 537–546 | MR | Zbl
[8] Ladyzenskaja O. A., Solonnikov V. A., Ural'ceva N. N., Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, R.I., 1968, 648 pp. | MR | MR
[9] Gârding L., Cauchy's problem for hyperbolic equations, Lecture notes, University of Chicago, Chicago, Ill, USA, 1957; Gording L., Zadacha Koshi dlya giperbolicheskikh uravnenii, Inostr. lit., M., 1961, 120 pp.