On solvability of a inverse problem for hyperbolic equation with an integral overdetermination condition
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 34-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study an inverse problem with an integral overdetermination condition for a hyperbolic equation with an unknown coefficient in equation. The existence and uniqueness of a solution is proved with the help of an a-priory estimate and Galyorkin procedure.
Keywords: inverse problem, integral condition, solvability.
@article{VSGTU_2011_2_a3,
     author = {N. V. Beylina},
     title = {On solvability of a inverse problem for hyperbolic equation with an integral overdetermination condition},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {34--39},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a3/}
}
TY  - JOUR
AU  - N. V. Beylina
TI  - On solvability of a inverse problem for hyperbolic equation with an integral overdetermination condition
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 34
EP  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a3/
LA  - ru
ID  - VSGTU_2011_2_a3
ER  - 
%0 Journal Article
%A N. V. Beylina
%T On solvability of a inverse problem for hyperbolic equation with an integral overdetermination condition
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 34-39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a3/
%G ru
%F VSGTU_2011_2_a3
N. V. Beylina. On solvability of a inverse problem for hyperbolic equation with an integral overdetermination condition. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 34-39. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a3/

[1] Cannon J. R., Lin Y., “Determination of a control parameter in a parabolic partial differential equation”, J. Austral. Math. Soc. Ser. B, 33:2 (1991), 149–163 | DOI | MR | Zbl

[2] Cannon J. R., Lin Y., “Determination of a parameter $p(t)$ in some quasi-linear parabolic differential equations”, Inverse Problems, 4:1 (1998), 35–45 | DOI | MR

[3] Ivanchov N. I., “On the determination of the time-dependent leading coefficient in a parabolic equation”, Siberian Math. J., 39:3 (1998), 465–475 | DOI | MR | Zbl

[4] Kamynin V. L., “On the inverse problem of determining the right-hand side of a parabolic equation under an integral overdetermination condition”, Math. Notes, 77:4 (2005), 482–493 | DOI | DOI | MR | Zbl

[5] Kozhanov A. I., “Solvability of the inverse problem of finding thermal conductivity”, Siberian Math. J., 46:5 (2005), 841–856 | DOI | MR | Zbl

[6] Prilepko A. I., Kostin A. B., “On certain inverse problems for parabolic equations with final and integral observation”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 473–490 | DOI | MR | MR | Zbl

[7] Prilepko A. I., Tkachenko D. S., “Properties of solutions of a parabolic equation and the uniqueness of the solution of the inverse source problem with integral overdetermination”, Comput. Math. Math. Phys., 43:4 (2003), 537–546 | MR | Zbl

[8] Ladyzenskaja O. A., Solonnikov V. A., Ural'ceva N. N., Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, R.I., 1968, 648 pp. | MR | MR

[9] Gârding L., Cauchy's problem for hyperbolic equations, Lecture notes, University of Chicago, Chicago, Ill, USA, 1957; Gording L., Zadacha Koshi dlya giperbolicheskikh uravnenii, Inostr. lit., M., 1961, 120 pp.