Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_2_a27, author = {S. V. Chervon and Yu. A. Svistunova}, title = {Spherically-symmetric non-linear sigma model: the exact solutions obtained with isometrical embedding method}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {227--234}, publisher = {mathdoc}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a27/} }
TY - JOUR AU - S. V. Chervon AU - Yu. A. Svistunova TI - Spherically-symmetric non-linear sigma model: the exact solutions obtained with isometrical embedding method JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 227 EP - 234 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a27/ LA - ru ID - VSGTU_2011_2_a27 ER -
%0 Journal Article %A S. V. Chervon %A Yu. A. Svistunova %T Spherically-symmetric non-linear sigma model: the exact solutions obtained with isometrical embedding method %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 227-234 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a27/ %G ru %F VSGTU_2011_2_a27
S. V. Chervon; Yu. A. Svistunova. Spherically-symmetric non-linear sigma model: the exact solutions obtained with isometrical embedding method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 227-234. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a27/
[1] Ivanov G. G., “Symmetries, conservation laws, and exact solutions in nonlinear sigma models”, Theoret. and Math. Phys., 57:1 (1983), 981–987 | DOI | MR
[2] Ivanov G. G., “Polynomial conservation laws and exact solutions associated with isometric and homothetic symmetries in the nonlinear sigma model”, Theoret. and Math. Phys., 62:1 (1985), 95–101 | DOI | MR
[3] Chervon S. V., “Chiral non-linear sigma model in general relativity and cosmology”, Lecture Notes in Theoretical and Mathematical Physics, Kazan State University Press, Kazan, 2006, 108–172
[4] Chervon S., Dahia F., Romero C., “Harmonic maps and isometric embeddings of the spacetime”, Phys. Lett. A, 326:3–4 (2004), 171–177, arXiv: gr-qc/0312022 | DOI | MR | Zbl
[5] Chervon S., Romero C., “The embedding of the space time in a target space of sigma model”, Gen. Relativ. Gravitation, 36:7 (2004), 1555–1561 | DOI | MR | Zbl
[6] Chervon S. V., Svistunova Yu. A., “Generation of exact solutions in three-component self-gravitating kinetic non-linear sigma model with the use of isometric embeddings”, Izv. Vuz. Povolzhskiy Region. Fiz.-Mat. Nauki., 2008, no. 2, 95–106
[7] Chervon S. V., “Plane-symmetric solutions of SO(4)-invariant non-linear self-gravitating sigma model”, Izv. Vuz. Fizika, 26:8 (1983), 89–93
[8] Chervon S. V., Non-linear fields in the theory of gravity and cosmology, UlGU – Sredne-Volzhskiy NC, Ul'yanovsk, 1997, 191 pp.
[9] Dahia F., Romero C., “The embedding of the spacetime in five dimensions: an extension of Campbell–Magaard theorem”, J. Math. Phys., 43:11 (2002), 5804–5814 | DOI | MR | Zbl
[10] Anderson E., Lidsey J., “Embeddings in non-vacuum spacetimes”, Class. Quant. Grav., 18:22 (2001), 4831–4844 | DOI | MR
[11] Anderson E., Dahia F., Lidsey J., Romero C., “Embeddings in spacetimes sourced by scalar fields”, J. Math. Phys., 44:11 (2003), 5108–5119 | DOI | MR | Zbl
[12] Campbell J., A course of differential geometry, Claredon Press, Oxford, 1926, 261 pp. | Zbl
[13] Magaard L., Zur Einbettung Riemannscher Räume in Einstein-Räume und konformeuclidische Räume, PhD Thesis, Kiel, 1963
[14] Dahia F., Romero C., “The embedding of the spacetime in five-dimensional spaces with arbitrary non-degenerate Ricci tensor”, J. Math. Phys., 43:6 (2002), 3097–3106 | DOI | MR | Zbl
[15] Tolman R. C., Relativity, thermodynamics, and cosmology, Clarendon Press, Oxford, 1934, 519 pp.; Tolmen R., Otnositelnost, termodinamika i kosmologiya, Nauka, M., 1974, 520 pp. | MR
[16] Chervon S. V., “Cosmological models of global universe evolution and decomposition of perturbations”, Int. J. Mod. Phys. A, 17:29 (2002), 4451–4456 | DOI | MR | Zbl