Spherically-symmetric non-linear sigma model: the exact solutions obtained with isometrical embedding method
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 227-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method to generate exact cosmological solutions in the frame of the spherically-symmetric non-linear sigma model offered in the present paper. This method is based on the isometrical embeddings of the target space (non-linear sigma-model fields chiral space) into space-time. Also the method application to two- and three-component chiral spaces embedded into space-time was considered. The exact cosmological solutions were obtained in the frame of the several special cases of the two- and three-component spherical-symmetric non-linear sigma-model. The obtained cosmological solutions were also investigated.
Keywords: non-linear sigma model, isometrical embedding method, exact cosmological solutions.
@article{VSGTU_2011_2_a27,
     author = {S. V. Chervon and Yu. A. Svistunova},
     title = {Spherically-symmetric non-linear sigma model: the exact solutions obtained with isometrical embedding method},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {227--234},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a27/}
}
TY  - JOUR
AU  - S. V. Chervon
AU  - Yu. A. Svistunova
TI  - Spherically-symmetric non-linear sigma model: the exact solutions obtained with isometrical embedding method
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 227
EP  - 234
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a27/
LA  - ru
ID  - VSGTU_2011_2_a27
ER  - 
%0 Journal Article
%A S. V. Chervon
%A Yu. A. Svistunova
%T Spherically-symmetric non-linear sigma model: the exact solutions obtained with isometrical embedding method
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 227-234
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a27/
%G ru
%F VSGTU_2011_2_a27
S. V. Chervon; Yu. A. Svistunova. Spherically-symmetric non-linear sigma model: the exact solutions obtained with isometrical embedding method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 227-234. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a27/

[1] Ivanov G. G., “Symmetries, conservation laws, and exact solutions in nonlinear sigma models”, Theoret. and Math. Phys., 57:1 (1983), 981–987 | DOI | MR

[2] Ivanov G. G., “Polynomial conservation laws and exact solutions associated with isometric and homothetic symmetries in the nonlinear sigma model”, Theoret. and Math. Phys., 62:1 (1985), 95–101 | DOI | MR

[3] Chervon S. V., “Chiral non-linear sigma model in general relativity and cosmology”, Lecture Notes in Theoretical and Mathematical Physics, Kazan State University Press, Kazan, 2006, 108–172

[4] Chervon S., Dahia F., Romero C., “Harmonic maps and isometric embeddings of the spacetime”, Phys. Lett. A, 326:3–4 (2004), 171–177, arXiv: gr-qc/0312022 | DOI | MR | Zbl

[5] Chervon S., Romero C., “The embedding of the space time in a target space of sigma model”, Gen. Relativ. Gravitation, 36:7 (2004), 1555–1561 | DOI | MR | Zbl

[6] Chervon S. V., Svistunova Yu. A., “Generation of exact solutions in three-component self-gravitating kinetic non-linear sigma model with the use of isometric embeddings”, Izv. Vuz. Povolzhskiy Region. Fiz.-Mat. Nauki., 2008, no. 2, 95–106

[7] Chervon S. V., “Plane-symmetric solutions of SO(4)-invariant non-linear self-gravitating sigma model”, Izv. Vuz. Fizika, 26:8 (1983), 89–93

[8] Chervon S. V., Non-linear fields in the theory of gravity and cosmology, UlGU – Sredne-Volzhskiy NC, Ul'yanovsk, 1997, 191 pp.

[9] Dahia F., Romero C., “The embedding of the spacetime in five dimensions: an extension of Campbell–Magaard theorem”, J. Math. Phys., 43:11 (2002), 5804–5814 | DOI | MR | Zbl

[10] Anderson E., Lidsey J., “Embeddings in non-vacuum spacetimes”, Class. Quant. Grav., 18:22 (2001), 4831–4844 | DOI | MR

[11] Anderson E., Dahia F., Lidsey J., Romero C., “Embeddings in spacetimes sourced by scalar fields”, J. Math. Phys., 44:11 (2003), 5108–5119 | DOI | MR | Zbl

[12] Campbell J., A course of differential geometry, Claredon Press, Oxford, 1926, 261 pp. | Zbl

[13] Magaard L., Zur Einbettung Riemannscher Räume in Einstein-Räume und konformeuclidische Räume, PhD Thesis, Kiel, 1963

[14] Dahia F., Romero C., “The embedding of the spacetime in five-dimensional spaces with arbitrary non-degenerate Ricci tensor”, J. Math. Phys., 43:6 (2002), 3097–3106 | DOI | MR | Zbl

[15] Tolman R. C., Relativity, thermodynamics, and cosmology, Clarendon Press, Oxford, 1934, 519 pp.; Tolmen R., Otnositelnost, termodinamika i kosmologiya, Nauka, M., 1974, 520 pp. | MR

[16] Chervon S. V., “Cosmological models of global universe evolution and decomposition of perturbations”, Int. J. Mod. Phys. A, 17:29 (2002), 4451–4456 | DOI | MR | Zbl