On representation of Parseval frames
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 194-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates properties of Parseval frames in finite dimensional vector spaces, namely, the possibility of representing some frames as sums of others. A new approach in constructing arbitrary Parseval frames and the decomposition arbitrary frame into the sum are described. Besides there is a number of special properties of equiangular tight frames.
Keywords: Parseval frames, frame equivalency, frame representations, equiangular frames, tight frames.
@article{VSGTU_2011_2_a24,
     author = {I. S. Ryabtsov},
     title = {On representation of {Parseval} frames},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {194--199},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a24/}
}
TY  - JOUR
AU  - I. S. Ryabtsov
TI  - On representation of Parseval frames
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 194
EP  - 199
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a24/
LA  - ru
ID  - VSGTU_2011_2_a24
ER  - 
%0 Journal Article
%A I. S. Ryabtsov
%T On representation of Parseval frames
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 194-199
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a24/
%G ru
%F VSGTU_2011_2_a24
I. S. Ryabtsov. On representation of Parseval frames. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 194-199. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a24/

[1] Christensen O., An introduction to frames and Riesz bases. Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003, 440 pp.

[2] Casazza P. G., Tremain J. C., A brief introduction to Hilbert-space frame theory and its applications, preprint posted on www.framerc.org

[3] Istomina M. N., Pevnyi A. B., “On disposition of points on a sphere and Mercedes–Benz frame”, Mat. Pros., Ser. 3, 11, Izd-vo MCNMO, Moscow, 2007, 105–112

[4] Novikov S. Ya., Ryabtsov I. S., “Optimization of Frame Representations for Compressed Sensing and Mercedes-Benz Frame”, Proc. Steklov Inst. Math., 265 (2009), 199–207 | DOI | Zbl

[5] Casazza P. G., Redmond D., Tremain J. C., “Real equiangular frames”, Proc. 42th Annu. Conf. Information Sciences and Systems (CISS 2008), Princeton, NJ, 2008, 715–720 | DOI