The problem with integral condition for one space analog of hyperbolic type equation degenerated on~a~coordinate planes
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 189-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the full equation of the third order in a three-dimensional Euclidean space the boundary value problem with interface on non-characteristic plane in the area limited by planes of a singularity of the equation factors is solved.
Keywords: boundary value problem, hyperbolic type equation, integral equations, integral conditions.
@article{VSGTU_2011_2_a23,
     author = {I. N. Rodionova},
     title = {The problem with integral condition for one space analog of  hyperbolic type equation degenerated on~a~coordinate planes},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {189--193},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a23/}
}
TY  - JOUR
AU  - I. N. Rodionova
TI  - The problem with integral condition for one space analog of  hyperbolic type equation degenerated on~a~coordinate planes
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 189
EP  - 193
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a23/
LA  - ru
ID  - VSGTU_2011_2_a23
ER  - 
%0 Journal Article
%A I. N. Rodionova
%T The problem with integral condition for one space analog of  hyperbolic type equation degenerated on~a~coordinate planes
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 189-193
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a23/
%G ru
%F VSGTU_2011_2_a23
I. N. Rodionova. The problem with integral condition for one space analog of  hyperbolic type equation degenerated on~a~coordinate planes. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 189-193. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a23/

[1] Zhegalov V. I., Mironov A. N., Differential equations with higher partial derivatives, Kazan. Mat. Obshch., Kazan', 2001, 226 pp.

[2] Zakharov V. N., “Boundary value problem for one equation degenerate on a coordinate planes”, Doklady 52-oy nauchnoy konferencii SGPU, SGGU, Samara, 1998, 49–53