Some spectral properties of a~generalized Friedrichs~model
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 181-188

Voir la notice de l'article provenant de la source Math-Net.Ru

{We consider self-adjoint generalized Friedrichs model $h(p)$, $p \in {\mathcal T}^3$ (${\mathcal T}^3$ is the three-dimensional torus), in the case where the parameter functions $w_1$ and $w_2$ of this operator has the special forms. These functions has non-degenerate minimum at the several different points. Threshold effects for the considering operator are studied depending on the minimum points of $w_2$.
Keywords: generalized Friedrichs model, zero energy resonance, eigenvalue, Fredholm determinant.
@article{VSGTU_2011_2_a22,
     author = {T. H. Rasulov and Kh. Kh. Turdiev},
     title = {Some spectral properties of a~generalized {Friedrichs~model}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {181--188},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a22/}
}
TY  - JOUR
AU  - T. H. Rasulov
AU  - Kh. Kh. Turdiev
TI  - Some spectral properties of a~generalized Friedrichs~model
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 181
EP  - 188
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a22/
LA  - ru
ID  - VSGTU_2011_2_a22
ER  - 
%0 Journal Article
%A T. H. Rasulov
%A Kh. Kh. Turdiev
%T Some spectral properties of a~generalized Friedrichs~model
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 181-188
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a22/
%G ru
%F VSGTU_2011_2_a22
T. H. Rasulov; Kh. Kh. Turdiev. Some spectral properties of a~generalized Friedrichs~model. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 181-188. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a22/