Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_2_a22, author = {T. H. Rasulov and Kh. Kh. Turdiev}, title = {Some spectral properties of a~generalized {Friedrichs~model}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {181--188}, publisher = {mathdoc}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a22/} }
TY - JOUR AU - T. H. Rasulov AU - Kh. Kh. Turdiev TI - Some spectral properties of a~generalized Friedrichs~model JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 181 EP - 188 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a22/ LA - ru ID - VSGTU_2011_2_a22 ER -
%0 Journal Article %A T. H. Rasulov %A Kh. Kh. Turdiev %T Some spectral properties of a~generalized Friedrichs~model %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 181-188 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a22/ %G ru %F VSGTU_2011_2_a22
T. H. Rasulov; Kh. Kh. Turdiev. Some spectral properties of a~generalized Friedrichs~model. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 181-188. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a22/
[1] Albeverio S., Lakaev S. N., Makarov K. A., Muminov Z. I., “The threshold effects for the two-particle Hamiltonians in lattice”, Commun. Math. Phys., 262:1 (2006), 91–115, arXiv: math-ph/0501013 | DOI | Zbl
[2] Albeverio S., Lakaev S. N., Muminov Z. I., “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Henri Poincare, 5:4 (2004), 743–772 | DOI | Zbl
[3] Abdullaev J. I., Lakaev S. N., “Asymptotics of the discrete spectrum of the three-particle Schrödinger difference operator on a lattice”, Theoret. and Math. Phys., 136:2 (2003), 1096–1109 | DOI | DOI | Zbl
[4] Albeverio S., Lakaev S. N., Muminov Z. I., “The threshold effects for a family of Friedrichs models under rank one perturbations”, J. Math. Anal. Appl., 330:2 (2007), 1152–1168, arXiv: [math.SP] math/0604277 | DOI | Zbl
[5] Faddeev L. D., “On a model of Friedrichs in the theory of perturbations of the continuous spectrum”, Boundary value problems of mathematical physics. Part 2, Collection of articles. Dedicated to the memory of Vladimir Andreevich Steklov in connection with the centennial of his birth, Trudy Mat. Inst. Steklov., 73, Nauka, Moscow–Leningrad, 1964, 292–313 | MR | Zbl
[6] Minlos R. A., Sinai Ya. G., “Spectra of stochastic operators arising in lattice models of a gas”, Theoret. and Math. Phys., 2:2 (1970), 167–176 | DOI | MR
[7] Dyn'kin E. M., Naboko S. N., Yakovlev S. I., “A finiteness bound for the singular spectrum in a selfadjoint Friedrichs model”, St. Petersburg Math. J., 3:2 (1992), 299–313 | Zbl
[8] Albeverio S., Lakaev S. N., Rasulov T. H., “On the Spectrum of an Hamiltonian in Fock Space. Discrete Spectrum Asymptotics”, J. Stat. Phys., 127:2 (2007), 191–220 | DOI | Zbl
[9] Rasulov T. Kh., “Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice”, Theoret. and Math. Phys., 163:1 (2010), 429–437 | DOI | DOI | Zbl
[10] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978, 396 pp. ; Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 430 pp. | MR | Zbl | MR | Zbl