Some spectral properties of a~generalized Friedrichs~model
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 181-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

{We consider self-adjoint generalized Friedrichs model $h(p)$, $p \in {\mathcal T}^3$ (${\mathcal T}^3$ is the three-dimensional torus), in the case where the parameter functions $w_1$ and $w_2$ of this operator has the special forms. These functions has non-degenerate minimum at the several different points. Threshold effects for the considering operator are studied depending on the minimum points of $w_2$.
Keywords: generalized Friedrichs model, zero energy resonance, eigenvalue, Fredholm determinant.
@article{VSGTU_2011_2_a22,
     author = {T. H. Rasulov and Kh. Kh. Turdiev},
     title = {Some spectral properties of a~generalized {Friedrichs~model}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {181--188},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a22/}
}
TY  - JOUR
AU  - T. H. Rasulov
AU  - Kh. Kh. Turdiev
TI  - Some spectral properties of a~generalized Friedrichs~model
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 181
EP  - 188
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a22/
LA  - ru
ID  - VSGTU_2011_2_a22
ER  - 
%0 Journal Article
%A T. H. Rasulov
%A Kh. Kh. Turdiev
%T Some spectral properties of a~generalized Friedrichs~model
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 181-188
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a22/
%G ru
%F VSGTU_2011_2_a22
T. H. Rasulov; Kh. Kh. Turdiev. Some spectral properties of a~generalized Friedrichs~model. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 181-188. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a22/

[1] Albeverio S., Lakaev S. N., Makarov K. A., Muminov Z. I., “The threshold effects for the two-particle Hamiltonians in lattice”, Commun. Math. Phys., 262:1 (2006), 91–115, arXiv: math-ph/0501013 | DOI | Zbl

[2] Albeverio S., Lakaev S. N., Muminov Z. I., “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Henri Poincare, 5:4 (2004), 743–772 | DOI | Zbl

[3] Abdullaev J. I., Lakaev S. N., “Asymptotics of the discrete spectrum of the three-particle Schrödinger difference operator on a lattice”, Theoret. and Math. Phys., 136:2 (2003), 1096–1109 | DOI | DOI | Zbl

[4] Albeverio S., Lakaev S. N., Muminov Z. I., “The threshold effects for a family of Friedrichs models under rank one perturbations”, J. Math. Anal. Appl., 330:2 (2007), 1152–1168, arXiv: [math.SP] math/0604277 | DOI | Zbl

[5] Faddeev L. D., “On a model of Friedrichs in the theory of perturbations of the continuous spectrum”, Boundary value problems of mathematical physics. Part 2, Collection of articles. Dedicated to the memory of Vladimir Andreevich Steklov in connection with the centennial of his birth, Trudy Mat. Inst. Steklov., 73, Nauka, Moscow–Leningrad, 1964, 292–313 | MR | Zbl

[6] Minlos R. A., Sinai Ya. G., “Spectra of stochastic operators arising in lattice models of a gas”, Theoret. and Math. Phys., 2:2 (1970), 167–176 | DOI | MR

[7] Dyn'kin E. M., Naboko S. N., Yakovlev S. I., “A finiteness bound for the singular spectrum in a selfadjoint Friedrichs model”, St. Petersburg Math. J., 3:2 (1992), 299–313 | Zbl

[8] Albeverio S., Lakaev S. N., Rasulov T. H., “On the Spectrum of an Hamiltonian in Fock Space. Discrete Spectrum Asymptotics”, J. Stat. Phys., 127:2 (2007), 191–220 | DOI | Zbl

[9] Rasulov T. Kh., “Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice”, Theoret. and Math. Phys., 163:1 (2010), 429–437 | DOI | DOI | Zbl

[10] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978, 396 pp. ; Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 430 pp. | MR | Zbl | MR | Zbl