Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_2_a2, author = {G. A. Sviridyuk and A. V. Keller}, title = {On the numerical solution convergence of optimal control problems for {Leontief} type system}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {24--33}, publisher = {mathdoc}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a2/} }
TY - JOUR AU - G. A. Sviridyuk AU - A. V. Keller TI - On the numerical solution convergence of optimal control problems for Leontief type system JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 24 EP - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a2/ LA - ru ID - VSGTU_2011_2_a2 ER -
%0 Journal Article %A G. A. Sviridyuk %A A. V. Keller %T On the numerical solution convergence of optimal control problems for Leontief type system %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 24-33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a2/ %G ru %F VSGTU_2011_2_a2
G. A. Sviridyuk; A. V. Keller. On the numerical solution convergence of optimal control problems for Leontief type system. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 24-33. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a2/
[1] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, Inverse and Ill-posed Problems Series, VSP, Utrecht – Boston – Koln – Tokyo, 2003, 216 pp. | MR | Zbl
[2] Sviridyuk G. A., Brychev C. V., “Numerical solution of systems of equations of Leont'ev type”, Russian Math. (Iz. VUZ), 47:8 (2003), 44–50 | MR | Zbl
[3] Leontief W. W., Input-Output Economics, Oxford University Press, New York, 1986, 436 pp.
[4] Burlachko I. V., Sviridyuk G. A., “An algorithm for solving the Cauchy problem for degenerate linear systems of ordinary differential equations”, Comput. Math. Math. Phys., 43:11 (2003), 1613–1619 | MR | Zbl
[5] Pavlov B. V., Povzner A. Ja., “A certain method for the numerical integration of systems of ordinary differential equations”, U.S.S.R. Comput. Math. Math. Phys., 13:4 (1973), 292–297 | DOI | MR | Zbl
[6] Pavlov B. V., Rodionova O. E., “Method of local linearization for the numerical solution of stiff systems of ordinary differential equations”, U.S.S.R. Comput. Math. Math. Phys., 27:3 (1987), 30–38 | DOI | MR | Zbl | Zbl
[7] Pavlov V. B., Rodionova O. E., “The numerical solution of systems of linear ordinary differential equations with constant coefficients”, Comput. Math. Math. Phys., 34:4 (1994), 535–539 | MR | Zbl
[8] Brychev S. V., Investigation of a mathematical model of the economics communal services of small towns, Candidate of physico-mathematical sciences thesis, Chelyabinsk, 2002, 124 pp.
[9] Burlachko I. V., Investigation of optimal control of Leontief type systems, Candidate of physico-mathematical sciences thesis, Chelyabinsk, 2005, 123 pp.
[10] Sviridyuk G. A., Fedorov V. E., Linear equations of Sobolev type, Chelyab. Gos. Un-t, Chelyabinsk, 2003, 179 pp. | MR | Zbl
[11] Keller A. V., “Algorithm of numerical solution Showalter–Sidorov problem for Leontief type systems”, Optimization methods and their applications, Irkutsk – Severobaykalsk, 2008, 343–350
[12] Sviridyuk G. A., Efremov A. A., “Optimal control problem for a class of linear equations of Sobolev type.”, Russian Math. (Iz. VUZ), 40:12 (1996), 60–71 | MR | Zbl
[13] Sviridyuk G. A., Efremov A. A., “Optimal control of Sobolev-type linear equations with relatively $p$-spectorial operators”, Differ. Equations, 31:11 (1995), 1882–1890 | MR | Zbl