Extension of the Lorentz symmetry up to conformal in the limit of ultrahigh energies
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 149-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

The group-theoretical justification is presented for the original approach by Kirznits and Chechin which allows for the primary protons of ultra-high energy cosmic rays to overcome the energetic limit (about 50 EeV) of Greisen–Zatsepin–Kuzmin remaining in the scope of the usual ideas about the nature of the extra-galactic sources of the cosmic rays. It is shown that the explicit form of the factor deforming the Lorentz invariant in the energy-momentum space may be found on the grounds of the approximate transition from Lorentz symmetry to the conformal values of the Lorentz-factor of the order $10^{10} \div 10^{11}$.
Mots-clés : Lorentz group, conformal group
Keywords: cosmic rays, Greisen–Zatsepin–Kuzmin limit, ultra-high energy.
@article{VSGTU_2011_2_a18,
     author = {I. A. Vernigora and Yu. G. Rudoi},
     title = {Extension of the {Lorentz} symmetry up to conformal in the limit of ultrahigh energies},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {149--154},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a18/}
}
TY  - JOUR
AU  - I. A. Vernigora
AU  - Yu. G. Rudoi
TI  - Extension of the Lorentz symmetry up to conformal in the limit of ultrahigh energies
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 149
EP  - 154
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a18/
LA  - ru
ID  - VSGTU_2011_2_a18
ER  - 
%0 Journal Article
%A I. A. Vernigora
%A Yu. G. Rudoi
%T Extension of the Lorentz symmetry up to conformal in the limit of ultrahigh energies
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 149-154
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a18/
%G ru
%F VSGTU_2011_2_a18
I. A. Vernigora; Yu. G. Rudoi. Extension of the Lorentz symmetry up to conformal in the limit of ultrahigh energies. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 149-154. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a18/

[1] Greisen K., “End to the cosmic-ray spectrum?”, Phys. Rev. Lett., 16:17 (1966), 748–750 | DOI

[2] Zatsepin G. T., Kuz'min V. A., “Upper limit of the spectrum of cosmic rays”, JETP, 4:3 (1966), 78–80

[3] Stecker F. W., “Effect of photomeson production by the universal radiation field on the high-energy cosmic rays”, Phys. Rev. Lett., 21:14 (1968), 1016–1018 | DOI

[4] Panasyuk M. I., Wanderers of the Universe or the Big Bang Echo, Vek 2, Fryazino, 2005, 267 pp.

[5] Zasov A. V., Postnov K. A., General astrophysics, Vek 2, Fryazino, 2006, 496 pp.

[6] Ptuskin V. S., “On the origin of galactic cosmic rays”, Phys. Usp., 50:5 (2007), 534–540 | DOI | DOI

[7] Ivanov A. A., Knurenko S. P., Pravdin M. I., Krasilnikov A. D., Sleptsov I. E., “A search for extragalactic sources of cosmic rays in the ultra-high energy domain”, Bulletin of the Russian Academy of Sciences: Physics, 73:5 (2009), 544–546 | DOI | MR

[8] Olinto A. V., Adams H. J., Dermer C. D. et al., White paper on ultra-high energy cosmic rays, http://uhecr.uchicago.edu

[9] Berezinsky V. S., “Ultra-high energy cosmic rays”, Nucl. Phys. B., 81 (2000), 311–322 | DOI

[10] Kirzhnits D. A., Chechin V. A., “Ultra-high energy cosmic rays and possible generalization of the relativistic theory”, Yadern. Fiz., 15:5 (1972), 1051–1059

[11] Coleman S., Glashow S. L., “High-energy tests of Lorentz invariance”, Phys. Rev. D, 59:11 (1999), 116008, 14 pp. | DOI

[12] Gonzalez-Mestres L., Deformed Lorentz symmetry and high-energy astrophysics (I), 2000, arXiv: [physics.gen-ph] physics/0003080

[13] Scully S. T., Stecker F. W., “Lorentz invariance violation and the observed spectrum of ultrahigh energy cosmic rays”, Astroparticle Physics, 31:3, 220–225, arXiv: [astro-ph] 0811.2230 | DOI

[14] Jacobson T., Liberati S., Mattingly D., “Astrophysical bounds on Planck suppressed Lorentz violation”, Lect. Not. Phys., 669 (2005), 101–130, arXiv: hep-ph/0407370 | DOI