Numerical modelling of major planets movement on~the new interaction principle basis
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 116-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical integration of the equations of movement of major planets, on the basis of a new principle of interaction is spent. Elements of orbits of major planets on large time interval (1602—2200) are calculated. Results of calculations are compared with elements of the orbits defined according to coordinates and speeds by numerical theory DE405. It is shown that elements of orbits of the exterior planets, found on new algorithm, will well be coordinated with dates DE405. For internal planets Venus, the Earth and Mars have insignificant discrepancies in secular offsets of perihelions in comparison with dates DE405.
Mots-clés : orbital elements
Keywords: numerical integration, motion differential equation, barycentric coordinates.
@article{VSGTU_2011_2_a13,
     author = {A. F. Zausaev},
     title = {Numerical modelling of major planets movement on~the new interaction principle basis},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {116--122},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a13/}
}
TY  - JOUR
AU  - A. F. Zausaev
TI  - Numerical modelling of major planets movement on~the new interaction principle basis
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 116
EP  - 122
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a13/
LA  - ru
ID  - VSGTU_2011_2_a13
ER  - 
%0 Journal Article
%A A. F. Zausaev
%T Numerical modelling of major planets movement on~the new interaction principle basis
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 116-122
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a13/
%G ru
%F VSGTU_2011_2_a13
A. F. Zausaev. Numerical modelling of major planets movement on~the new interaction principle basis. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 116-122. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a13/

[1] Zausaev A. F., “Theory of motion of $n$ material bodies, based on a new interaction principle”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2006, no. 43, 132–139 | DOI

[2] Zausaev A. F., “Influence non-spherical shape of the Earth on perturbed body motion”, Proceedings of the Seven All-Russian Scientific Conference with international participation. Part 3, Matem. Modelirovanie i Kraev. Zadachi, SamGTU, Samara, 2010, 105–111

[3] Newhall X. X., Standish E. M., Williams J. G., “DE 102: A numerically integrated ephemeris of the moon and planets spanning forty-four centuries”, Astron. Astrophys., 125:1 (1983), 150–167 | Zbl

[4] Standish E. M., JPL Planetary and Lunar Ephemerides, DE405/LE405, Jet Prop Lab Technical Report. IOM 312. F–98–048, http://iau-comm4.jpl.nasa.gov/de405iom/de405iom.pdf

[5] Everhart E., “Implist single methods for integrating orbits”, Celestial Mechanics, 10:1 35–55 (1974) | DOI | MR | Zbl

[6] Zausaev A. F., Zausaev A. A., “Employment of the modification Everhart's method for solution of problems of celestial mechanics”, Matem. Modelirovanie, 20:11 (2008), 109–114 | Zbl

[7] Brumberg V. A., Relativistic celestial mechanics, Nauka, Moscow, 1972, 382 pp. | MR | Zbl