Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_2_a13, author = {A. F. Zausaev}, title = {Numerical modelling of major planets movement on~the new interaction principle basis}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {116--122}, publisher = {mathdoc}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a13/} }
TY - JOUR AU - A. F. Zausaev TI - Numerical modelling of major planets movement on~the new interaction principle basis JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 116 EP - 122 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a13/ LA - ru ID - VSGTU_2011_2_a13 ER -
%0 Journal Article %A A. F. Zausaev %T Numerical modelling of major planets movement on~the new interaction principle basis %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 116-122 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a13/ %G ru %F VSGTU_2011_2_a13
A. F. Zausaev. Numerical modelling of major planets movement on~the new interaction principle basis. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 116-122. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a13/
[1] Zausaev A. F., “Theory of motion of $n$ material bodies, based on a new interaction principle”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2006, no. 43, 132–139 | DOI
[2] Zausaev A. F., “Influence non-spherical shape of the Earth on perturbed body motion”, Proceedings of the Seven All-Russian Scientific Conference with international participation. Part 3, Matem. Modelirovanie i Kraev. Zadachi, SamGTU, Samara, 2010, 105–111
[3] Newhall X. X., Standish E. M., Williams J. G., “DE 102: A numerically integrated ephemeris of the moon and planets spanning forty-four centuries”, Astron. Astrophys., 125:1 (1983), 150–167 | Zbl
[4] Standish E. M., JPL Planetary and Lunar Ephemerides, DE405/LE405, Jet Prop Lab Technical Report. IOM 312. F–98–048, http://iau-comm4.jpl.nasa.gov/de405iom/de405iom.pdf
[5] Everhart E., “Implist single methods for integrating orbits”, Celestial Mechanics, 10:1 35–55 (1974) | DOI | MR | Zbl
[6] Zausaev A. F., Zausaev A. A., “Employment of the modification Everhart's method for solution of problems of celestial mechanics”, Matem. Modelirovanie, 20:11 (2008), 109–114 | Zbl
[7] Brumberg V. A., Relativistic celestial mechanics, Nauka, Moscow, 1972, 382 pp. | MR | Zbl