Solution parallelization of softening plasticity problems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 89-100

Voir la notice de l'article provenant de la source Math-Net.Ru

Parallelization of deformation-damage coupling boundary value problem solution is considered. In definition the equations of the strength we used the principle of equivalence of deformations in a real and relatively undamaged structures. Principle of real and hypothetical undamaged structure strain equivalence is applied. An iterative procedure, which feature is successive solutions of plasticity and damage problems at each iteration step, is proposed. The approach to parallelization of softening plasticity boundary value problem solution is based on the conception of generalized nonlinear structural models and on the method of decomposition.
Keywords: parallelization, generalized model, softening plasticity, boundary value problem, nonlocal plastic strain.
Mots-clés : structure, decomposition
@article{VSGTU_2011_2_a10,
     author = {Ya. M. Klebanov and I. E. Adeyanov},
     title = {Solution parallelization of softening plasticity problems},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {89--100},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a10/}
}
TY  - JOUR
AU  - Ya. M. Klebanov
AU  - I. E. Adeyanov
TI  - Solution parallelization of softening plasticity problems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 89
EP  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a10/
LA  - ru
ID  - VSGTU_2011_2_a10
ER  - 
%0 Journal Article
%A Ya. M. Klebanov
%A I. E. Adeyanov
%T Solution parallelization of softening plasticity problems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 89-100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a10/
%G ru
%F VSGTU_2011_2_a10
Ya. M. Klebanov; I. E. Adeyanov. Solution parallelization of softening plasticity problems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 89-100. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a10/