Some new generalized integral transformations and their application in differential equations theory
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 8-16

Voir la notice de l'article provenant de la source Math-Net.Ru

We present new integral transforms, generalized the classical Laplace, Stieltjes and Widder integral transforms in the potential theory. The $(\tau,\beta)$-generalized confluent hypergeometric functions are the kernels of these integral transforms. Inverse formulas for new integral transforms are proved. Relations of the Parseval–Goldstein type are established. Some examples of applications of the new integral transforms are given.
Keywords: integral transforms, Parseval–Goldstein type identity, inversion theorems.
@article{VSGTU_2011_2_a0,
     author = {O. A. Repin and S. M. Zaikina},
     title = {Some new generalized integral transformations and their application in differential equations theory},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {8--16},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a0/}
}
TY  - JOUR
AU  - O. A. Repin
AU  - S. M. Zaikina
TI  - Some new generalized integral transformations and their application in differential equations theory
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 8
EP  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a0/
LA  - ru
ID  - VSGTU_2011_2_a0
ER  - 
%0 Journal Article
%A O. A. Repin
%A S. M. Zaikina
%T Some new generalized integral transformations and their application in differential equations theory
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 8-16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a0/
%G ru
%F VSGTU_2011_2_a0
O. A. Repin; S. M. Zaikina. Some new generalized integral transformations and their application in differential equations theory. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2011), pp. 8-16. http://geodesic.mathdoc.fr/item/VSGTU_2011_2_a0/