Generalized functions asymptotically homogeneous along the unstable degenerated node
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 68-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The generalized functions which have quasiasymptotics along the trajectories of one-parametric group are called asymptomatically homogeneous. The corresponding limit functions are homogeneous with respect to this group. In this paper we give the full description of asymptotically homogeneous generalized functions along the trajectories of unstable degenerated node. The obtained results are applied for description of homogeneous generalized functions for such trajectories in two dimensional case.
Mots-clés : distributions
Keywords: quasiasymptotics, degenerate node, homogeneous generalized functions, asymptotically homogeneous functions.
@article{VSGTU_2011_1_a8,
     author = {Yu. N. Drozhzhinov and B. I. Zav'yalov},
     title = {Generalized functions asymptotically homogeneous along the unstable degenerated node},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {68--82},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a8/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
AU  - B. I. Zav'yalov
TI  - Generalized functions asymptotically homogeneous along the unstable degenerated node
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 68
EP  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a8/
LA  - ru
ID  - VSGTU_2011_1_a8
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%A B. I. Zav'yalov
%T Generalized functions asymptotically homogeneous along the unstable degenerated node
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 68-82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a8/
%G ru
%F VSGTU_2011_1_a8
Yu. N. Drozhzhinov; B. I. Zav'yalov. Generalized functions asymptotically homogeneous along the unstable degenerated node. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 68-82. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a8/

[1] Drozhzhinov Yu. N. Zav'yalov B. I., “Generalized functions asymptotically homogeneous along special transformation groups”, Sb. Math., 200:6 (2009), 803–844 | DOI | DOI | MR | Zbl

[2] Drozhzhinov Yu. N. Zav'yalov B. I., “Asymptotically homogeneous generalized functions at zero and convolution equations with kernels quasi-homogeneous polynomial symbols”, Dokl. Math., 79:3 (2009), 356–359 | DOI | MR | Zbl

[3] Drozhzhinov Yu. N. Zav'yalov B. I., Dokl. Math., 78:1 (2008), 503–507 | DOI | MR | Zbl

[4] Drozhzhinov Yu. N. Zav'yalov B. I., “Asymptotically homogeneous generalized functions and boundary properties of functions holomorphic in tubular cones”, Izv. Math., 70:6 (2006), 1117–1164 | DOI | DOI | MR | Zbl

[5] Drozhzhinov Yu. N. Zav'yalov B. I., “Asymptotically homogeneous generalized functions in spherical representation and applications”, Dokl. Math., 72:3 (2005), 839–542 | MR | MR | Zbl

[6] Seneta E., Regularly varying functions, Lecture Notes in Mathematics, 508, Springer-Verlag, Berlin – Heidelberg – New York, 1976, 112 pp. ; Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 144 pp. | DOI | MR | Zbl | MR | Zbl

[7] von Grudzinski O., Quasihomogeneous Distributions, North-Hollandmathematics studies, 165, North-Holland, Amsterdam, 1991, 449 pp. | MR | Zbl

[8] Vladimirov V. S., Drozhzhinov Yu. N., Zav'yalov B. I., Multidimensional Tauberian theorems for generalized functions, Nauka, Moscow, 1986, 304 pp. | MR

[9] Gelfand I. M., Shilov G. E., Generalized functions and calculations with them. Issue 1, Fizmatlit, Moscow, 1959, 470 pp.