Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_1_a8, author = {Yu. N. Drozhzhinov and B. I. Zav'yalov}, title = {Generalized functions asymptotically homogeneous along the unstable degenerated node}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {68--82}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a8/} }
TY - JOUR AU - Yu. N. Drozhzhinov AU - B. I. Zav'yalov TI - Generalized functions asymptotically homogeneous along the unstable degenerated node JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 68 EP - 82 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a8/ LA - ru ID - VSGTU_2011_1_a8 ER -
%0 Journal Article %A Yu. N. Drozhzhinov %A B. I. Zav'yalov %T Generalized functions asymptotically homogeneous along the unstable degenerated node %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 68-82 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a8/ %G ru %F VSGTU_2011_1_a8
Yu. N. Drozhzhinov; B. I. Zav'yalov. Generalized functions asymptotically homogeneous along the unstable degenerated node. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 68-82. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a8/
[1] Drozhzhinov Yu. N. Zav'yalov B. I., “Generalized functions asymptotically homogeneous along special transformation groups”, Sb. Math., 200:6 (2009), 803–844 | DOI | DOI | MR | Zbl
[2] Drozhzhinov Yu. N. Zav'yalov B. I., “Asymptotically homogeneous generalized functions at zero and convolution equations with kernels quasi-homogeneous polynomial symbols”, Dokl. Math., 79:3 (2009), 356–359 | DOI | MR | Zbl
[3] Drozhzhinov Yu. N. Zav'yalov B. I., Dokl. Math., 78:1 (2008), 503–507 | DOI | MR | Zbl
[4] Drozhzhinov Yu. N. Zav'yalov B. I., “Asymptotically homogeneous generalized functions and boundary properties of functions holomorphic in tubular cones”, Izv. Math., 70:6 (2006), 1117–1164 | DOI | DOI | MR | Zbl
[5] Drozhzhinov Yu. N. Zav'yalov B. I., “Asymptotically homogeneous generalized functions in spherical representation and applications”, Dokl. Math., 72:3 (2005), 839–542 | MR | MR | Zbl
[6] Seneta E., Regularly varying functions, Lecture Notes in Mathematics, 508, Springer-Verlag, Berlin – Heidelberg – New York, 1976, 112 pp. ; Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 144 pp. | DOI | MR | Zbl | MR | Zbl
[7] von Grudzinski O., Quasihomogeneous Distributions, North-Hollandmathematics studies, 165, North-Holland, Amsterdam, 1991, 449 pp. | MR | Zbl
[8] Vladimirov V. S., Drozhzhinov Yu. N., Zav'yalov B. I., Multidimensional Tauberian theorems for generalized functions, Nauka, Moscow, 1986, 304 pp. | MR
[9] Gelfand I. M., Shilov G. E., Generalized functions and calculations with them. Issue 1, Fizmatlit, Moscow, 1959, 470 pp.