The estimates of the solution of the Dirichlet problem with boundary function from $L_p$ for a~second-order elliptic equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 53-67

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solvability of the Dirichlet problem for a second-order elliptic equation with measurable and bounded coefficients. Assuming that coefficients of equation are Dini-continued on the boundary, it is established that there is the unique solution of the Dirichlet problem with boundary function from $L_p$, $p>1$. We prove the estimate of the analogue of area integral.
Mots-clés : elliptic equation
Keywords: Dirichlet problem, functional space.
@article{VSGTU_2011_1_a7,
     author = {A. K. Gushchin},
     title = {The estimates of the solution of the {Dirichlet} problem with boundary function from $L_p$ for a~second-order elliptic equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {53--67},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a7/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - The estimates of the solution of the Dirichlet problem with boundary function from $L_p$ for a~second-order elliptic equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 53
EP  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a7/
LA  - ru
ID  - VSGTU_2011_1_a7
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T The estimates of the solution of the Dirichlet problem with boundary function from $L_p$ for a~second-order elliptic equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 53-67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a7/
%G ru
%F VSGTU_2011_1_a7
A. K. Gushchin. The estimates of the solution of the Dirichlet problem with boundary function from $L_p$ for a~second-order elliptic equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 53-67. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a7/