Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_1_a6, author = {N. A. Gusev}, title = {Weak and strong convergence of~solutions to~linearized equations of~low compressible fluid}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {47--52}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a6/} }
TY - JOUR AU - N. A. Gusev TI - Weak and strong convergence of~solutions to~linearized equations of~low compressible fluid JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 47 EP - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a6/ LA - ru ID - VSGTU_2011_1_a6 ER -
%0 Journal Article %A N. A. Gusev %T Weak and strong convergence of~solutions to~linearized equations of~low compressible fluid %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 47-52 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a6/ %G ru %F VSGTU_2011_1_a6
N. A. Gusev. Weak and strong convergence of~solutions to~linearized equations of~low compressible fluid. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 47-52. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a6/
[1] Feireisl E., Novotný A., “The low mach number limit for the full Navier–Stokes–Fourier system”, Arch. Ration. Mech. Anal., 2007, no. 186, 77–107 | DOI | MR | Zbl
[2] Feireisl E., Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and its Applications, 26, Oxford Univ. Press, Oxford, 2004, 212 pp. | MR | Zbl
[3] Feireisl E., Novotný A., “The Oberbeck–Boussinesq approximation as a singular limit of the full Navier–Stokes–Fourier system”, J. Math. Fluid Mech., 11:2 (2009), 274–302 | DOI | MR | Zbl
[4] Lions P.-L., Masmoudi N., “Incompressible limit for a viscous compressible fluid”, J. Math. Pures Appl., IX. Sér., 77:6 (1998), 585–627 | DOI | MR | Zbl
[5] Temam R., Navier–Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications, 2, North-Holland, Amsterdam – New York – Oxford, 1979, 519 pp. | MR | Zbl
[6] Shifrin E. G., “Unstable Flows in Viscous Slightly Compressible Fluids. The Condition of Continuous Dependence on Compressibility”, Dokl. Phys., 44:3 (1999), 189–192 | MR | Zbl
[7] Pribyl' M. A., “Spectral analysis of linearized stationary equations of viscous compressible fluid in $\mathbb{R}^3$, with periodic boundary conditions”, St. Petersburg Math. J., 20:2 (2009), 267–288 | DOI | MR | Zbl
[8] Ikehata R., Koboyashi T., Matsuyama T., “Remark on the $L_2$ estimates of the density for the compressible Navier–Stokes flow in $\mathbb R^3$”, Nonlinear Anal., Theory Methods Appl., 47:4 (2001), 2519–2526 | DOI | MR | Zbl
[9] Mucha P.B., Zajączkowski W.M., “On a $L_{p}$-estimate for the linearized compressible Navier–Stokes equations with the Dirichlet boundary conditions”, J. Differ. Equations, 186:2 (2002), 377–393 | DOI | MR | Zbl
[10] Gasiński L., Papageorgiou N.S., Nonlinear Analysis, Series in Mathematical Analysis and Applications, 9, Chapman Hall/CRC, Boca Raton, FL, 2006, 971 pp. | MR | Zbl
[11] Ladyzhenskaya O. A., The boundary value problems of mathematical physics, Applied Mathematical Sciences, 49, Springer-Verlag, Berlin etc., 1985, 322 pp. | DOI | MR | MR | Zbl
[12] Bogovskiy M. E., “Solution of the first boundary value problem for an equation of continuity of an incompressible medium”, DAN SSSR, 248:5 (1979), 1037–1040 | MR