Weak and strong convergence of~solutions to~linearized equations of~low compressible fluid
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 47-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Initial-boundary value problem for linearized equations of viscous barotropic low compressible fluid in a bounded domain is considered. Convergence of solutions of this problem at withincompressible limit approaching to zero is studied. Sufficient conditions for the weak and strong convergence of this problem for uncompressible liquid are given.
Keywords: linearized equations of compressible fluid, compressibility factor, low compressible fluid.
@article{VSGTU_2011_1_a6,
     author = {N. A. Gusev},
     title = {Weak and strong convergence of~solutions to~linearized equations of~low compressible fluid},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {47--52},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a6/}
}
TY  - JOUR
AU  - N. A. Gusev
TI  - Weak and strong convergence of~solutions to~linearized equations of~low compressible fluid
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 47
EP  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a6/
LA  - ru
ID  - VSGTU_2011_1_a6
ER  - 
%0 Journal Article
%A N. A. Gusev
%T Weak and strong convergence of~solutions to~linearized equations of~low compressible fluid
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 47-52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a6/
%G ru
%F VSGTU_2011_1_a6
N. A. Gusev. Weak and strong convergence of~solutions to~linearized equations of~low compressible fluid. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 47-52. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a6/

[1] Feireisl E., Novotný A., “The low mach number limit for the full Navier–Stokes–Fourier system”, Arch. Ration. Mech. Anal., 2007, no. 186, 77–107 | DOI | MR | Zbl

[2] Feireisl E., Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and its Applications, 26, Oxford Univ. Press, Oxford, 2004, 212 pp. | MR | Zbl

[3] Feireisl E., Novotný A., “The Oberbeck–Boussinesq approximation as a singular limit of the full Navier–Stokes–Fourier system”, J. Math. Fluid Mech., 11:2 (2009), 274–302 | DOI | MR | Zbl

[4] Lions P.-L., Masmoudi N., “Incompressible limit for a viscous compressible fluid”, J. Math. Pures Appl., IX. Sér., 77:6 (1998), 585–627 | DOI | MR | Zbl

[5] Temam R., Navier–Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications, 2, North-Holland, Amsterdam – New York – Oxford, 1979, 519 pp. | MR | Zbl

[6] Shifrin E. G., “Unstable Flows in Viscous Slightly Compressible Fluids. The Condition of Continuous Dependence on Compressibility”, Dokl. Phys., 44:3 (1999), 189–192 | MR | Zbl

[7] Pribyl' M. A., “Spectral analysis of linearized stationary equations of viscous compressible fluid in $\mathbb{R}^3$, with periodic boundary conditions”, St. Petersburg Math. J., 20:2 (2009), 267–288 | DOI | MR | Zbl

[8] Ikehata R., Koboyashi T., Matsuyama T., “Remark on the $L_2$ estimates of the density for the compressible Navier–Stokes flow in $\mathbb R^3$”, Nonlinear Anal., Theory Methods Appl., 47:4 (2001), 2519–2526 | DOI | MR | Zbl

[9] Mucha P.B., Zajączkowski W.M., “On a $L_{p}$-estimate for the linearized compressible Navier–Stokes equations with the Dirichlet boundary conditions”, J. Differ. Equations, 186:2 (2002), 377–393 | DOI | MR | Zbl

[10] Gasiński L., Papageorgiou N.S., Nonlinear Analysis, Series in Mathematical Analysis and Applications, 9, Chapman Hall/CRC, Boca Raton, FL, 2006, 971 pp. | MR | Zbl

[11] Ladyzhenskaya O. A., The boundary value problems of mathematical physics, Applied Mathematical Sciences, 49, Springer-Verlag, Berlin etc., 1985, 322 pp. | DOI | MR | MR | Zbl

[12] Bogovskiy M. E., “Solution of the first boundary value problem for an equation of continuity of an incompressible medium”, DAN SSSR, 248:5 (1979), 1037–1040 | MR