Cauchy problem for the wave equation on~non-globally hyperbolic manifolds
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 42-46

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Cauchy problem for wave equation on two types of non-global hyperbolic manifolds: Minkowski plane with an attached handle and Misner space. We prove that the classical solution on a plane with a handle exists and is unique if and only if a finite set of point-wise constraints on initial values is satisfied. On the Misner space the existence and uniqueness of a solution is equivalent to much stricter constraints for the initial data.
Keywords: wave equation, Cauchy problem, non-globally hyperbolic manifolds.
@article{VSGTU_2011_1_a5,
     author = {O. V. Groshev},
     title = {Cauchy problem for the wave equation on~non-globally hyperbolic manifolds},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {42--46},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a5/}
}
TY  - JOUR
AU  - O. V. Groshev
TI  - Cauchy problem for the wave equation on~non-globally hyperbolic manifolds
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 42
EP  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a5/
LA  - ru
ID  - VSGTU_2011_1_a5
ER  - 
%0 Journal Article
%A O. V. Groshev
%T Cauchy problem for the wave equation on~non-globally hyperbolic manifolds
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 42-46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a5/
%G ru
%F VSGTU_2011_1_a5
O. V. Groshev. Cauchy problem for the wave equation on~non-globally hyperbolic manifolds. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 42-46. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a5/