Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_1_a5, author = {O. V. Groshev}, title = {Cauchy problem for the wave equation on~non-globally hyperbolic manifolds}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {42--46}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a5/} }
TY - JOUR AU - O. V. Groshev TI - Cauchy problem for the wave equation on~non-globally hyperbolic manifolds JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 42 EP - 46 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a5/ LA - ru ID - VSGTU_2011_1_a5 ER -
%0 Journal Article %A O. V. Groshev %T Cauchy problem for the wave equation on~non-globally hyperbolic manifolds %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 42-46 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a5/ %G ru %F VSGTU_2011_1_a5
O. V. Groshev. Cauchy problem for the wave equation on~non-globally hyperbolic manifolds. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 42-46. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a5/
[1] Petrowsky I. G., “Über das Cauchysche Problem für Systeme von partiellen Differentialgleichungen”, Mat. Sb., 2(44):5 (1937), 815–870 | Zbl
[2] Lere Zh., Hyperbolic differential equations, Nauka, Moscow, 1984, 208 pp. | MR
[3] Hawking S. W., Ellis G. F. R., The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, 1, Cambridge University Press, London – New York, 1973, 391 pp. ; Khoking C., Ellis Dzh., Krupnomasshtabnaya struktura prostranstva-vremeni, Mir, M., 1977, 432 pp. | MR
[4] Politzer H. D., “Path integrals, density matrices, and information flow with closed timelike curves”, Phys. Rev. D, 49:8 (1994), 3981–3989, arXiv: gr-qc/9310027 | DOI | MR
[5] Gott J. R., “Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions”, Phys. Rev. Lett., 66:9 (1991), 1126–1129 | DOI | MR | Zbl
[6] Bernal A., Sanchez A., “Smoothness of time functions and the metric splitting of globally hyperbolic space–times”, Comm. Math. Phys., 257:1 (2005), 43–50 | DOI | MR | Zbl
[7] Friedman J., Morris M. S., Novikov I. D., Echeverria F., Klinkhammer G., Thorne K. S., Yurtsever U., “Cauchy problem in spacetimes with closed timelike curves”, Phys. Rev. D, 42:6 (1990), 1915–1930 | DOI | MR
[8] Aref'eva I. Ya., Ishiwatari T., Volovich I. V., “Cauchy problem on non-globally hyperbolic space-times”, Theoret. and Math. Phys., 157:3 (2008), 1646–1654, arXiv: [hep-th] 0903.0567 | DOI | DOI | MR | Zbl
[9] Friedman J. L., “The Cauchy problem on spacetimes that are not globally hyperbolic”, The Einstein equations and the large scale behavior of gravitational fields, 50 Years of the Cauchy problem in general relativity, ed. P. T. Chrusćiel et al., Birkhäuser, New York, 2004, 331–346, arXiv: gr-qc/0401004 | DOI | MR | Zbl
[10] Friedman J. L., Morris M. S., “Existence and uniqueness theorems for massless fields on a class of spacetimes with closed timelike curves”, Comm. Math. Phys., 186:3 (1997), 495–530, arXiv: gr-qc/9411033 | DOI | MR
[11] Volovich I. V., Groshev O. V., Gusev N. A., Kuryanovich E. A., “On solutions to the wave equation on a non-globally hyperbolic manifold”, Proc. Steklov Inst. Math., 265 (2009), 262–275, arXiv: [hep-th] 0903.0741 | DOI | MR | Zbl
[12] Groshev O. V., “Existence and uniqueness of classical solutions of the Cauchy problem on nonglobally hyperbolic manifolds”, Theoret. and Math. Phys., 164:3 (2010), 1202–1207 | DOI | DOI | Zbl
[13] Aref'eva I. Ya., Volovich I. V., “Time Machine at the LHC”, Int. J. Geom. Meth. Mod. Phys., 5:4 (2008), 641–651, arXiv: [hep-th] 0710.2696 | DOI | MR | Zbl