Cauchy problem for the wave equation on~non-globally hyperbolic manifolds
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 42-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Cauchy problem for wave equation on two types of non-global hyperbolic manifolds: Minkowski plane with an attached handle and Misner space. We prove that the classical solution on a plane with a handle exists and is unique if and only if a finite set of point-wise constraints on initial values is satisfied. On the Misner space the existence and uniqueness of a solution is equivalent to much stricter constraints for the initial data.
Keywords: wave equation, Cauchy problem, non-globally hyperbolic manifolds.
@article{VSGTU_2011_1_a5,
     author = {O. V. Groshev},
     title = {Cauchy problem for the wave equation on~non-globally hyperbolic manifolds},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {42--46},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a5/}
}
TY  - JOUR
AU  - O. V. Groshev
TI  - Cauchy problem for the wave equation on~non-globally hyperbolic manifolds
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 42
EP  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a5/
LA  - ru
ID  - VSGTU_2011_1_a5
ER  - 
%0 Journal Article
%A O. V. Groshev
%T Cauchy problem for the wave equation on~non-globally hyperbolic manifolds
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 42-46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a5/
%G ru
%F VSGTU_2011_1_a5
O. V. Groshev. Cauchy problem for the wave equation on~non-globally hyperbolic manifolds. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 42-46. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a5/

[1] Petrowsky I. G., “Über das Cauchysche Problem für Systeme von partiellen Differentialgleichungen”, Mat. Sb., 2(44):5 (1937), 815–870 | Zbl

[2] Lere Zh., Hyperbolic differential equations, Nauka, Moscow, 1984, 208 pp. | MR

[3] Hawking S. W., Ellis G. F. R., The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, 1, Cambridge University Press, London – New York, 1973, 391 pp. ; Khoking C., Ellis Dzh., Krupnomasshtabnaya struktura prostranstva-vremeni, Mir, M., 1977, 432 pp. | MR

[4] Politzer H. D., “Path integrals, density matrices, and information flow with closed timelike curves”, Phys. Rev. D, 49:8 (1994), 3981–3989, arXiv: gr-qc/9310027 | DOI | MR

[5] Gott J. R., “Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions”, Phys. Rev. Lett., 66:9 (1991), 1126–1129 | DOI | MR | Zbl

[6] Bernal A., Sanchez A., “Smoothness of time functions and the metric splitting of globally hyperbolic space–times”, Comm. Math. Phys., 257:1 (2005), 43–50 | DOI | MR | Zbl

[7] Friedman J., Morris M. S., Novikov I. D., Echeverria F., Klinkhammer G., Thorne K. S., Yurtsever U., “Cauchy problem in spacetimes with closed timelike curves”, Phys. Rev. D, 42:6 (1990), 1915–1930 | DOI | MR

[8] Aref'eva I. Ya., Ishiwatari T., Volovich I. V., “Cauchy problem on non-globally hyperbolic space-times”, Theoret. and Math. Phys., 157:3 (2008), 1646–1654, arXiv: [hep-th] 0903.0567 | DOI | DOI | MR | Zbl

[9] Friedman J. L., “The Cauchy problem on spacetimes that are not globally hyperbolic”, The Einstein equations and the large scale behavior of gravitational fields, 50 Years of the Cauchy problem in general relativity, ed. P. T. Chrusćiel et al., Birkhäuser, New York, 2004, 331–346, arXiv: gr-qc/0401004 | DOI | MR | Zbl

[10] Friedman J. L., Morris M. S., “Existence and uniqueness theorems for massless fields on a class of spacetimes with closed timelike curves”, Comm. Math. Phys., 186:3 (1997), 495–530, arXiv: gr-qc/9411033 | DOI | MR

[11] Volovich I. V., Groshev O. V., Gusev N. A., Kuryanovich E. A., “On solutions to the wave equation on a non-globally hyperbolic manifold”, Proc. Steklov Inst. Math., 265 (2009), 262–275, arXiv: [hep-th] 0903.0741 | DOI | MR | Zbl

[12] Groshev O. V., “Existence and uniqueness of classical solutions of the Cauchy problem on nonglobally hyperbolic manifolds”, Theoret. and Math. Phys., 164:3 (2010), 1202–1207 | DOI | DOI | Zbl

[13] Aref'eva I. Ya., Volovich I. V., “Time Machine at the LHC”, Int. J. Geom. Meth. Mod. Phys., 5:4 (2008), 641–651, arXiv: [hep-th] 0710.2696 | DOI | MR | Zbl