The $n {-} \bar n$ oscillations in neutron fluxes running from Sun to Earth
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 313-317

Voir la notice de l'article provenant de la source Math-Net.Ru

The process of $n {-} \bar n$ oscillations in the solar cosmic-rays is considered. It is shown that it has high intensity with respect to the analogic processes on the Earth $(I_{c{-}r}/I_{\text{Earth}} \propto 10^8)$, because magnetic field strongly suppresses $n {-} \bar n$ oscillations. Energetic dependence of the $\bar n$ and $\bar p$ fluxes at the Earth is also found. Results obtained are argument for searching the $n {-} \bar n$ transitions in experiments with the solar cosmic-rays.
Mots-clés : neutron-antineutron oscillations
Keywords: solar cosmic-rays.
@article{VSGTU_2011_1_a39,
     author = {L. S. Molchatsky},
     title = {The $n {-} \bar n$ oscillations in neutron fluxes running from {Sun} to {Earth}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {313--317},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a39/}
}
TY  - JOUR
AU  - L. S. Molchatsky
TI  - The $n {-} \bar n$ oscillations in neutron fluxes running from Sun to Earth
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 313
EP  - 317
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a39/
LA  - ru
ID  - VSGTU_2011_1_a39
ER  - 
%0 Journal Article
%A L. S. Molchatsky
%T The $n {-} \bar n$ oscillations in neutron fluxes running from Sun to Earth
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 313-317
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a39/
%G ru
%F VSGTU_2011_1_a39
L. S. Molchatsky. The $n {-} \bar n$ oscillations in neutron fluxes running from Sun to Earth. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 313-317. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a39/