Thermal Equations of the Radiation Dominated Universe Evolution
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 297-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equations of the evolution of the Universe in Friedmann model are considered using thermodynamic functions and temperature as function of time. The exit for frameworks of the standard model is carried out, the influence of dark energy is considered.
Mots-clés : radiation dominance, Universe evolution, thermal equations.
@article{VSGTU_2011_1_a37,
     author = {M. V. Dolgopolov and E. Yu. Petrova},
     title = {Thermal {Equations} of the {Radiation} {Dominated} {Universe} {Evolution}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {297--304},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a37/}
}
TY  - JOUR
AU  - M. V. Dolgopolov
AU  - E. Yu. Petrova
TI  - Thermal Equations of the Radiation Dominated Universe Evolution
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 297
EP  - 304
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a37/
LA  - ru
ID  - VSGTU_2011_1_a37
ER  - 
%0 Journal Article
%A M. V. Dolgopolov
%A E. Yu. Petrova
%T Thermal Equations of the Radiation Dominated Universe Evolution
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 297-304
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a37/
%G ru
%F VSGTU_2011_1_a37
M. V. Dolgopolov; E. Yu. Petrova. Thermal Equations of the Radiation Dominated Universe Evolution. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 297-304. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a37/

[1] Guth A. H., “Inflationary universe: A possible solution to the horizon and flatness problems”, Phys. Rev. D, 1981, no. 23, 347–356 | DOI

[2] Gorbunov D. S., Rubakov V. A., Introduction to the Theory of the Early Universe. Hot Big Bang Theory, World Scientific, Hackensack, New York, 2011, 488 pp. | Zbl

[3] Weinberg S., Gravitation and cosmology: Principles and applications of the general theory of relativity, John Wiley and Sons, New York, London, Sydney, Toronto, 1972, 657 pp. ; Vainberg S., Gravitatsiya i kosmologiya. Printsipy i prilozheniya obschei teorii otnositelnosti, Mir, M., 1975, 696 pp. | Zbl

[4] Wald R. M., General Relativity, University of Chicago, Chicago, 1984, 491 pp. ; Uold R. M., Obschaya teoriya otnositelnosti, RUDN, M., 2008, 693 pp. | MR | Zbl

[5] Physics of fundamental interactions Dmitry Zimin's “Dynasty” Foundation Summer School (17–26 August 2006), Art-Business Center, Moscow, 2008, 496 pp.

[6] Landau L. D., Lifshits E. M., Theoretical physics, v. VI, Fluid dynamics, Nauka, Moscow, 1986, 736 pp. | MR

[7] Klapdor–Kleingrothaus G. V., Tsyuber K., Elementary particle astrophysics, transl. from German;, ed. V. A. Bednyakov, Red. zh. UFN, Moscow, 2000, 496 pp.

[8] Dolgov A. D., Mistery of vacuum energy or rise and fall of cosmological constant, 2002, arXiv: hep-ph/0203245

[9] Dolgov A. D., Problems of vacuum energy and dark energy, 2004, arXiv: hep-ph/0405089 | Zbl

[10] Lukash V. N., Mikheeva E. V., “Dark matter: from initial conditions to structure formation in the Universe”, Phys. Usp., 50:9 (2007), 971–976 | DOI | DOI