Mathematical model of the development of~the~wedging crack in the disturbed material
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 276-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article represents the numerical solution of the problem of the increasing wedging crack in the disturbed material. Solution of problem was achieved by the method of discontinuous displacements. Analytical dependences of the stress intensity factors of the first type on the normal displacements of the crack was determined.
Keywords: hiatal crack, method of discontinuous displacements, stress intensity factors of I type.
@article{VSGTU_2011_1_a34,
     author = {E. V. Spiridonova and S. V. Beloborodova},
     title = {Mathematical model of the development of~the~wedging crack in the disturbed material},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {276--282},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a34/}
}
TY  - JOUR
AU  - E. V. Spiridonova
AU  - S. V. Beloborodova
TI  - Mathematical model of the development of~the~wedging crack in the disturbed material
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 276
EP  - 282
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a34/
LA  - ru
ID  - VSGTU_2011_1_a34
ER  - 
%0 Journal Article
%A E. V. Spiridonova
%A S. V. Beloborodova
%T Mathematical model of the development of~the~wedging crack in the disturbed material
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 276-282
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a34/
%G ru
%F VSGTU_2011_1_a34
E. V. Spiridonova; S. V. Beloborodova. Mathematical model of the development of~the~wedging crack in the disturbed material. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 276-282. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a34/

[1] Cherepanov G. P., Fracture mechanics of rock during drilling, Nedra, Moscow, 1987, 308 pp.

[2] Khyamyalyainen V. A., Burkov Yu. V., Syrkin P. S., Cement screening around permanent roadways, Nedra, Moscow, 1994, 400 pp.

[3] Crouch S. L., Starfield A. M., Boundary element methods in solid mechanics: with applications in rock mechanics and geological engineering, George Allen Unwin, London – Boston – Sydney, 1983, 322 pp. ; Krauch S., Starfild A., Metody granichnykh elementov v mekhanike tverdogo tela, Mir, M., 1987, 328 pp. | MR | Zbl | MR

[4] Linkov A. M., Boundary integral equations in elasticity theory, Solid mechanics and its applications, 99, Kluwer Academic Publishers, Dordrecht, Boston, 2002, 268 pp. | DOI | Zbl