Method of states on the basis of Kilchevskiy's equations for analysis of 3D steady-state oscillation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 269-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

General solution of N. A. Kilchevskiy's equations for oscillating three-dimensional solids is constructed. Method of states for analysis of boundary-value problem about oscillations is proven, it is based on the following terms: states of medium (internal and boundary), space of states, scalar product, gilbert isomorphism.
Keywords: theory of elasticity, general solution, method of boundary states, steady-state oscillation.
Mots-clés : Kilchevskiy's equations
@article{VSGTU_2011_1_a33,
     author = {V. B. Pen'kov and I. N. Stebenev},
     title = {Method of states on the basis of {Kilchevskiy's} equations for analysis of {3D} steady-state oscillation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {269--275},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a33/}
}
TY  - JOUR
AU  - V. B. Pen'kov
AU  - I. N. Stebenev
TI  - Method of states on the basis of Kilchevskiy's equations for analysis of 3D steady-state oscillation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 269
EP  - 275
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a33/
LA  - ru
ID  - VSGTU_2011_1_a33
ER  - 
%0 Journal Article
%A V. B. Pen'kov
%A I. N. Stebenev
%T Method of states on the basis of Kilchevskiy's equations for analysis of 3D steady-state oscillation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 269-275
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a33/
%G ru
%F VSGTU_2011_1_a33
V. B. Pen'kov; I. N. Stebenev. Method of states on the basis of Kilchevskiy's equations for analysis of 3D steady-state oscillation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 269-275. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a33/

[1] Pen'kov V. B., Pen'kov V. V., “Boundary conditions method for solving linear mechanics problems”, Dal'nevost. matem. zhurn., 2:2 (2001), 115–137

[2] Kil'chevskiy N. A., The foundations of the tensor calculus, with applications to mechanics, Naukova dumka, Kiev, 1972, 148 pp. | MR

[3] Grinchenko V. T., Meleshko V. V., Harmonic oscillations and waves in elastic bodies, Naukova dumka, Kiev, 1981, 284 pp. | MR | Zbl

[4] Ostrosablin N. I., “Functions of kinetic stresses in continuum mechanics”, Dinamika sploshnoy sredy, no. 125, 2007, 76–116 | MR

[5] Pen'kov V. B., Satalkina L. V., “Efficient algorithms for the method of boundary states”, Vestn. TulGU. Ser. Aktual'nye voprosy mekhaniki, 2010, no. 2, 91–96

[6] Gorshkov A. G., Starovoytov E. I, Tarlakovsky D. V., Theory of elasticity and plasticity, Fizmatlit, Moscow, 2002, 416 pp.