Method of states on the basis of Kilchevskiy's equations for analysis of 3D steady-state oscillation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 269-275

Voir la notice de l'article provenant de la source Math-Net.Ru

General solution of N. A. Kilchevskiy's equations for oscillating three-dimensional solids is constructed. Method of states for analysis of boundary-value problem about oscillations is proven, it is based on the following terms: states of medium (internal and boundary), space of states, scalar product, gilbert isomorphism.
Keywords: theory of elasticity, general solution, method of boundary states, steady-state oscillation.
Mots-clés : Kilchevskiy's equations
@article{VSGTU_2011_1_a33,
     author = {V. B. Pen'kov and I. N. Stebenev},
     title = {Method of states on the basis of {Kilchevskiy's} equations for analysis of {3D} steady-state oscillation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {269--275},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a33/}
}
TY  - JOUR
AU  - V. B. Pen'kov
AU  - I. N. Stebenev
TI  - Method of states on the basis of Kilchevskiy's equations for analysis of 3D steady-state oscillation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 269
EP  - 275
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a33/
LA  - ru
ID  - VSGTU_2011_1_a33
ER  - 
%0 Journal Article
%A V. B. Pen'kov
%A I. N. Stebenev
%T Method of states on the basis of Kilchevskiy's equations for analysis of 3D steady-state oscillation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 269-275
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a33/
%G ru
%F VSGTU_2011_1_a33
V. B. Pen'kov; I. N. Stebenev. Method of states on the basis of Kilchevskiy's equations for analysis of 3D steady-state oscillation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 269-275. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a33/