Rheological model of viscoelastic body with memory and differential equations of fractional oscillator
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 255-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

One-dimensional generalized rheologic model of viscoelastic body with Riemann-Liouville derivatives is considered. Instead of derivatives of order $\alpha>1$ there are employed in defining relations derivatives of order $0\alpha1$ from integer derivatives. It’s shown, that the differential equation for the deformation with given dependence of the tension from the time with classical initial conditions of Cauchy are reduced to the Volterra integral equations. Some variants of the generalized fractional Voigt’s model are considered. Explicit solutions for corresponding differential equation for the deformation are found out. It’s indicated, that these solutions coincide with the classical ones when the fractional parameter vanishes.
Keywords: rheological model of viscoelastic body, differential equations with fractional Riemann–Liouville derivatives Mittag–Leffler type special functions.
@article{VSGTU_2011_1_a32,
     author = {E. N. Ogorodnikov and V. P. Radchenko and N. S. Yashagin},
     title = {Rheological model of viscoelastic  body with memory and differential equations of fractional oscillator},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {255--268},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a32/}
}
TY  - JOUR
AU  - E. N. Ogorodnikov
AU  - V. P. Radchenko
AU  - N. S. Yashagin
TI  - Rheological model of viscoelastic  body with memory and differential equations of fractional oscillator
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 255
EP  - 268
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a32/
LA  - ru
ID  - VSGTU_2011_1_a32
ER  - 
%0 Journal Article
%A E. N. Ogorodnikov
%A V. P. Radchenko
%A N. S. Yashagin
%T Rheological model of viscoelastic  body with memory and differential equations of fractional oscillator
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 255-268
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a32/
%G ru
%F VSGTU_2011_1_a32
E. N. Ogorodnikov; V. P. Radchenko; N. S. Yashagin. Rheological model of viscoelastic  body with memory and differential equations of fractional oscillator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 255-268. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a32/

[1] Rabotnov Yu. N., Mechanics of a deformable rigid body, Nauka, Moskva, 1988, 712 pp. | Zbl

[2] Bagley R. L., Torvik P. J., “Fractional calculus — A different approach to the analysis of viscoelastically damped structures”, AIAA J. , 21:5, 741–748 ; Begli R. L., Torvik P. Dzh., “Differentsialnoe ischislenie, osnovannoe na proizvodnykh drobnogo poryadka — novyi podkhod k raschetu konstruktsii s vyazko-uprugim dempfirovaniem”, Aerokosmicheskaya tekhnika, 2:2 (1984), 84–93 | DOI | Zbl

[3] Samko S. G., Kilbas A. A., Marichev O. I., Integrals and derivatives of fractional order and some of their applications, Nauka i Tekhnika, Minsk, 1987, 688 pp. | MR | Zbl

[4] Scott Blair G. W., A survey of general and applied rheology, Pitman, London, 1949, 314 pp. | Zbl

[5] Gerasimov A. N., “A generalization of linear laws of deformation and its application to the problems of internal friction”, Prikl. Mat. Mekh., 12:3 (1948), 251–260 | MR | Zbl

[6] Rabotnov Yu. N., “The equilibrium of an elastic medium with after-effect”, Prikl. Mat. Mekh., 12:1 (1948), 53–62 | MR | Zbl

[7] Caputo M., Mainardi F., “Linear models of dissipation in anelastic solids”, La Rivista del Nuovo Cimento, 1:2 (1971), 161–198 | DOI

[8] Caputo M., Mainardi F., “A new dissipation model based on memory mechanism”, Pure Appl. Geophys., 91:1 (1971), 134–147 | DOI

[9] Bagley R. L., Torvik P. J., “A theorical basis for the application of fractional calculus to viscoelasticity”, J. Rheol., 27:3 (1983), 201–210 | DOI | Zbl

[10] Nakhushev A. M., “Mathematical models of viscoelastic body”, Izv. Vuzov. Sev.-Kavk. Reg. Estestv. Nauki, 2000, no. 3, 107–109 | Zbl

[11] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, ed. J. van Mill, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[12] Ogorodnikov E. N., Radchenko V. P., Yashagin N. S., “Mathematical models of viscous-elastic body and forced oscillations of the fractional oscillator”, Conference Materials, International conference named after Academician M. Kravchuk (May 13–15, 2010), 1, NTTU, Kiyev, 2010, 344–345

[13] Ogorodnikov E. N., “Mathematical models of the fractional oscillator, setting and structure of the Cauchy problem”, Proceedings of the Sixth All-Russian Scientific Conference with international participation (1–4 June 2009). Part 1, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2009, 177–181

[14] Dzhrbashyan M. M., Integral transforms and representation of functions in the complex domain, Nauka, Moscow, 1966, 672 pp.

[15] Ogorodnikov E. N., Yashagin N. S., “Forced oscillations of the fractional oscillator”, Proceedings of the Fifth All-Russian Scientific Conference with international participation (29–31 May 2008). Part 1, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2008, 215–221

[16] Ogorodnikov E. N., Yashagin N. S., “On some properties of operators with Mittag–Leffler type functions in kernels”, Proceedings of the Sixth All-Russian Scientific Conference with international participation (1–4 June 2009). Part 3, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2009, 181–188

[17] Ogorodnikov E. N., “The correctness of the Cauchy–Goursat problem for loaded degenerate hyperbolic equations in some special cases, and its equivalent to the problem with nonlocal boundary conditions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2004, no. 26, 26–38 | DOI

[18] Ogorodnikov E. N., “On some boundary value problems for Bitsadze–Lykov equations system with involutory matrix”, Proceedings of the Tenth Inter-University Scientific Conference. Part 3, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2000, 119–126

[19] Ogorodnikov E. N., Yashagin N. S., “Some special functions in the solution to Cauchy problem for a fractional oscillating equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1(18), 276–279 | DOI

[20] Ogorodnikov E. N., Yashagin N. S., “On a generalization of Mittag–Leffler type functions, integral operator with the specified function in kernel, their properties and applications”, Actual Problems of Modern Science, v. 1–3, Mathematics. Mathematical Modeling. Mechanics, SamGTU, Samara, 2010, 261–267

[21] Ogorodnikov E. N., Yashagin N. S., “Setting and solving of the Cauchy type problems for the second order differential equations with Riemann–Liouville fractional derivatives”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 24–36 | DOI