Progective algorithm of boundary value problem for inhomogeneous Lame's equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 236-240

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of boundary value problem solution for the stationary inhomogeneous Lame's equation is considered. An appointed vector-function space splitting is used that leads to inhomogeneous biharmonic equation and Poisson's equation problems for components of required vector field. The basic potentials method is proposed to solve these problems.
Mots-clés : Lame's equation
Keywords: Weyl's expansion, bigarmonic equation, basic potentials method (of fundamental solutions).
@article{VSGTU_2011_1_a29,
     author = {V. G. Lezhnev and A. N. Markovsky},
     title = {Progective algorithm of boundary value problem for inhomogeneous {Lame's} equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {236--240},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a29/}
}
TY  - JOUR
AU  - V. G. Lezhnev
AU  - A. N. Markovsky
TI  - Progective algorithm of boundary value problem for inhomogeneous Lame's equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 236
EP  - 240
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a29/
LA  - ru
ID  - VSGTU_2011_1_a29
ER  - 
%0 Journal Article
%A V. G. Lezhnev
%A A. N. Markovsky
%T Progective algorithm of boundary value problem for inhomogeneous Lame's equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 236-240
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a29/
%G ru
%F VSGTU_2011_1_a29
V. G. Lezhnev; A. N. Markovsky. Progective algorithm of boundary value problem for inhomogeneous Lame's equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 236-240. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a29/