An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 196-220

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to a study of a natural $12$-dimensional symmetry algebra of the three-dimensional hyperbolic differential equations of the perfect plasticity, obtained by D. D. Ivlev in 1959 and formulated in isostatic coordinates. An optimal system of one-dimensional subalgebras constructing algorithm for the Lie algebra is proposed. The optimal system (total $187$ elements) is shown consisting of of a 3-parametrical element, twelve 2-parametrical elements, sixty six 1-parametrical elements and one hundred and eight individual elements.
Keywords: theory of plasticity, isostatic coordinate, symmetry group, symmetry algebra, optimal system, algorithm.
Mots-clés : subalgebra
@article{VSGTU_2011_1_a26,
     author = {V. A. Kovalev and Yu. N. Radaev},
     title = {An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {196--220},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a26/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - Yu. N. Radaev
TI  - An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 196
EP  - 220
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a26/
LA  - ru
ID  - VSGTU_2011_1_a26
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A Yu. N. Radaev
%T An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 196-220
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a26/
%G ru
%F VSGTU_2011_1_a26
V. A. Kovalev; Yu. N. Radaev. An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 196-220. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a26/