Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_1_a26, author = {V. A. Kovalev and Yu. N. Radaev}, title = {An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {196--220}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a26/} }
TY - JOUR AU - V. A. Kovalev AU - Yu. N. Radaev TI - An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 196 EP - 220 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a26/ LA - ru ID - VSGTU_2011_1_a26 ER -
%0 Journal Article %A V. A. Kovalev %A Yu. N. Radaev %T An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 196-220 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a26/ %G ru %F VSGTU_2011_1_a26
V. A. Kovalev; Yu. N. Radaev. An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 196-220. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a26/
[1] Hill R., The Mathematical Theory of Plasticity, Reprint of the 1950 original, v. 11, Oxford Classic Texts in the Physical Sciences. Oxford Engineering Science Series, The Clarendon Press, Oxford University Press, New York, 1988, 366 pp. ; Khill R., Matematicheskaya teoriya plastichnosti, Gostekhteoretizdat, M., 1956, 407 pp. | MR
[2] Freudental A. M., Geiringer H., “The mathematical theories of the inelastic continuum”, Handbuch der Physik, v. 6, Elastizität und Plastizität, ed. S. Flügge, Springer-Verlag, Berlin – Göttingen – Heidelberg, 1958, 229–433 ; Freidental A., Geiringer Kh., Matematicheskie teorii neuprugoi sploshnoi sredy, Fizmatgiz, M., 1962, 432 pp. | DOI | MR
[3] Kachanov L. M., Principles of Plasticity Theory, Nauka, Moscow, 1969, 420 pp.
[4] Sokolovsky V. V., Theory of plasticity, Vyssh. shk., Moscow, 1969, 608 pp.
[5] Ivlev D. D., Theory of ideal plasticity, Nauka, Moscow, 1966, 232 pp. | MR | Zbl
[6] Ivlev D. D., “The world is elliptic and the world is hyperbolic”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2005, no. 5(39), 33–41 | MR | Zbl
[7] Ivlev D. D. On relations defining plastic flow under Tresca condition of plasticity and its generalizations, Sov. Phys. Dokl., 4 (1959), 217–220 | MR | Zbl
[8] Radaev Yu. N., “On Poincaré's canonical transformations and the invariants of the plastic equilibrium equations”, Izv. AN SSSR. MTT, 1990, no. 1, 86–94
[9] Radaev Yu. N., “On the theory of three-dimensional equations of the mathematical theory of plasticity”, Izv. RAN. MTT, 2003, no. 5, 102–120
[10] Radaev Yu. N., Spatial Problem of Mathematical Theory of Plasticity, Izd-vo Samar. Univ., Samara, 2006, 340 pp.
[11] Ovsjannikov L. V., Group analysis of differential equations, Nauka, Moscow, 1978, 399 pp. | MR | Zbl
[12] Olver P. J., Application of Lie Groups to Differential Equations, v. 107, Graduate Texts in Mathematics, Springer, New York, 1986, 497 pp. ; Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 639 pp. | DOI | MR | Zbl | MR | Zbl
[13] Olver P. J., Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, New York, Melbourne, 1995, 526 pp. | MR | Zbl
[14] Kovalev V. A., Radaev Yu. N., Elements of the classical field theory: variational symmetries and geometric invariants, Fizmatlit, Moscow, 2009, 156 pp.