Matrix models and parquet approximation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 172-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we consider the comparison of planar and planar parquet approximations for zero-dimensional hermitian matrix models. We discuss how the parquet approach reproduces planar one for matrix model $\phi^4$, multi-trace model, two-matrix model and the Goldstone matrix model.
Keywords: matrix models, planar approximation, Schwinger–Dyson equations
Mots-clés : parquet equations.
@article{VSGTU_2011_1_a22,
     author = {A. O. Shishanin},
     title = {Matrix models and parquet approximation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {172--178},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a22/}
}
TY  - JOUR
AU  - A. O. Shishanin
TI  - Matrix models and parquet approximation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 172
EP  - 178
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a22/
LA  - ru
ID  - VSGTU_2011_1_a22
ER  - 
%0 Journal Article
%A A. O. Shishanin
%T Matrix models and parquet approximation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 172-178
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a22/
%G ru
%F VSGTU_2011_1_a22
A. O. Shishanin. Matrix models and parquet approximation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 172-178. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a22/

[1] Hooft G.'t., “A planar diagram theory for strong interactions”, Nucl. Phys. B., 72:3 (1974), 461–473, arXiv: hep-th/9808113 | DOI

[2] Brézin E., Itzykson C., Parisi G., Zuber J. B., “Planar diagrams”, Commun. Math. Phys., 59:1 (1978), 35–51 | DOI | MR | Zbl

[3] Aref'eva I. Ya., Zubarev A. P., “Parquet approximation in large $N$ matrix theories”, Phys. Lett. B., 386:1–4 (1996), 258–268, arXiv: hep-th/9605005 | DOI | MR

[4] Das S. R., Dhar A., Sengupta A. M., Wadia S. R., “New critical behavior in $d=0$ large-$N$ matrix models”, Mod. Phys. Lett. A., 5:13 (1990), 1041–1056 | DOI | MR | Zbl

[5] Shishanin A. O., “Multitrace matrix model in the parquet approximation”, Russian Physics Journal, 48:12 (2005), 1287–1293 | DOI | Zbl

[6] Itzykson C., Zuber J. B., “The planar approximation. II”, J. Math. Phys., 21:3 (1980), 411–421 | DOI | MR | Zbl

[7] Kazakov V. A., “Ising model on a dynamical planar random lattice: exact solution”, Phys. Lett. A., 119:3 (1986), 140–144 | DOI | MR

[8] Shishanin A. O., “A solution to the parquet equations for a two-matrix model”, Russian Physics Journal, 49:5 (2006), 559–562 | DOI

[9] Shimamune Y., “On the phase structure of large $N$ matrix models and gauge models”, Phys. Lett. B., 108:6 (1982), 407–411 | DOI

[10] Cicuta G.M., Molinari L., Montaldi E., “Large $N$ phase transitions in low dimensions”, Mod. Phys. Lett. A, 1:2 (1986), 125–129 | DOI | MR

[11] Shishanin A., Ziatdinov I., “Parquet approximation for large-$N$ matrix Higgs model”, JHEP, 2003:07 (2003), 032, 12 pp., arXiv: hep-th/0303169 | DOI