Theorem on the norm of elements of spinor groups
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 165-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider Clifford's algebra over the field of real numbers of finite dimension. We define the operation of Hermitian conjugation for the elements of Clifford's algebra. This operation allows us to define the structure of Euclidian space on the Clifford algebra. We consider pseudo-orthogonal group and its subgroups — special pseudo-orthogonal, orthochronous, orthochorous and special orthochronous groups. As known, spinor groups are double covers of these orthogonal groups. We proved a theorem that relates the norm of element of spinor group with the minor of matrix of the orthogonal group.
Keywords: Clifford's algebra, spinor groups, orthogonal groups
Mots-clés : orthochronous group, orthochorous group.
@article{VSGTU_2011_1_a21,
     author = {D. S. Shirokov},
     title = {Theorem on the norm of elements of spinor groups},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {165--171},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a21/}
}
TY  - JOUR
AU  - D. S. Shirokov
TI  - Theorem on the norm of elements of spinor groups
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 165
EP  - 171
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a21/
LA  - ru
ID  - VSGTU_2011_1_a21
ER  - 
%0 Journal Article
%A D. S. Shirokov
%T Theorem on the norm of elements of spinor groups
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 165-171
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a21/
%G ru
%F VSGTU_2011_1_a21
D. S. Shirokov. Theorem on the norm of elements of spinor groups. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 165-171. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a21/

[1] Lounesto P., Clifford Algebras and Spinors, v. 239, L.M.S. Lecture Notes, Cambridge Univ. Press, Cambridge, 1997, 306 pp. | MR | Zbl

[2] Marchuk N. G., Equations of Field Theory and Clifford Algebras, RKhD, Moscow, Izhevsk, 2009, 304 pp.

[3] Marchuk N. G., Shirokov D. S., “Unitary spaces on Clifford algebras”, Adv. in Appl. Cliff. Alg., 18:2 (2008), 237–254 | DOI | MR | Zbl

[4] Shirokov D. S., “Classification of elements of clifford algebras according to quaternionic types”, Doklady Mathematics, 80:1 (2009), 610–612 | DOI | MR | Zbl

[5] Benn I. M., Tucker R. W., An Introduction to Spinors and Geometry with Applications in Physics, IOP Publishing Ltd, Bristol, 1987, 358 pp. | MR | Zbl

[6] Gantmakher F. R., Theory of matrices, Nauka, Moscow, 1988, 549 pp. | MR | Zbl