Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_1_a20, author = {A. S. Trushechkin}, title = {Boltzmann equation and $H$-theorem in the functional formulation of classical mechanics}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {158--164}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a20/} }
TY - JOUR AU - A. S. Trushechkin TI - Boltzmann equation and $H$-theorem in the functional formulation of classical mechanics JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 158 EP - 164 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a20/ LA - ru ID - VSGTU_2011_1_a20 ER -
%0 Journal Article %A A. S. Trushechkin %T Boltzmann equation and $H$-theorem in the functional formulation of classical mechanics %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 158-164 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a20/ %G ru %F VSGTU_2011_1_a20
A. S. Trushechkin. Boltzmann equation and $H$-theorem in the functional formulation of classical mechanics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 158-164. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a20/
[1] Kozlov V. V., Thermal equilibrium in the sense of Gibbs and Poincaré, Institut Komp'yuternykh Issledovanij, Moscow, Izhevsk, 2002, 320 pp. | MR | Zbl
[2] Bogolyubov N. N., Problems of Dynamical Theory in Statistical Physics, Gostekhizdat, Moscow, Leningrad, 1946, 119 pp. | MR
[3] Bogolyubov N. N., “Kinetic equations and Green functions in statistical mechanics”, Collection of scientific works in twelve volumes, v. V, Nauka, Moscow, 2005, 616–638
[4] Volovich I. V., “Time Irreversibility Problem and Functional Formulation of Classical Mechanics”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008, no. 8/1(67), 35–55
[5] Volovich I. V., “Bogoliubov equations and functional mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1128–1135 | DOI | DOI | Zbl
[6] Trushechkin A. S., Volovich I. V., “Functional classical mechanics and rational numbers”, $p$-Adic Numbers, Ultrametric Analysis, and Applications, 1:4 (2009), 361–367, arXiv: 0910.1502 [math-ph] | DOI | MR | Zbl
[7] Trushechkin A. S., “Irreversibility and the role of an instrument in the functional formulation of classical mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1198–1201 | DOI | DOI | Zbl
[8] Lifshitz E. M., Pitaevskii L. M., Physical Kinetics, Fizmatlit, Moscow, 2002, 536 pp. | Zbl
[9] Wigner E., “The Unreasonable Effectiveness of Mathematics in the Natural Sciences”, Commun. Pure Appl. Math., 13:1 (1960), 1–14 ; Vigner E., “Nepostizhimaya effektivnost matematiki v estestvennykh naukakh”, Etyudy o simmetrii, Mir, M., 1971, 182–198 | DOI | Zbl