On nonlocal cosmological equations on half-line
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 16-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of nonlocal cosmological equations where the time variable runs over a half-line is considered. These equations are more suitable for description of the Universe than the previously discussed cosmological equations on the whole line since the Friedmann metric contains a singularity at the beginning of time. Definition of the exponential operator includes a new arbitrary function which is absent in the equations on the whole line. It is shown that this function could be choosen in such a way that one of the slow roll parameters in the chaotic inflation scenario can be made arbitrary small. Solutions of the linearized nonlocal equations on the half-line are constructed.
Keywords: equations with an infinite number of derivatives, cosmological models, heat conduction equation.
@article{VSGTU_2011_1_a2,
     author = {I. Ya. Aref'eva and I. V. Volovich},
     title = {On nonlocal cosmological equations on half-line},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {16--27},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a2/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - I. V. Volovich
TI  - On nonlocal cosmological equations on half-line
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 16
EP  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a2/
LA  - ru
ID  - VSGTU_2011_1_a2
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A I. V. Volovich
%T On nonlocal cosmological equations on half-line
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 16-27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a2/
%G ru
%F VSGTU_2011_1_a2
I. Ya. Aref'eva; I. V. Volovich. On nonlocal cosmological equations on half-line. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 16-27. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a2/

[1] Aref'eva I. Ya., “Nonlocal string tachyon as a model for cosmological dark energy”, AIP Conf. Proc., 826 (2006), 301–311, arXiv: astro-ph/0410443 | DOI | MR | Zbl

[2] Aref'eva I. Ya., Koshelev A. S., Vernov S. Yu., “Crossing of the $w=-1$ barrier by D3-brane dark energy model”, Phys. Rev. D, 72:6 (2005), 064017, arXiv: astro-ph/0507067 | DOI

[3] Calcagni G., “Cosmological tachyon from cubic string field theory”, JHEP, 2006:05 (2006), 012, 25 pp., arXiv: hep-th/0512259 | DOI | MR

[4] Barnaby N., Biswas T., Cline J. M., “$p$-Adic inflation”, JHEP, 2007:04 (2007), 056, 35 pp., arXiv: hep-th/0612230 | DOI | MR

[5] Aref'eva I. Ya., Joukovskaya L. V., Vernov S. Yu., “Bouncing and accelerating solutions in nonlocal stringy models”, JHEP, 2007:07 (2007), 087, 36 pp., arXiv: hep-th/0701184 | DOI | MR

[6] Calcagni G., Montobbio M., Nardelli G., “Route to nonlocal cosmology”, Phys. Rev. D, 76:12 (2007), 126001, 20 pp., arXiv: [hep-th] 0705.3043 | DOI | MR

[7] Joukovskaya L., “Dynamics in nonlocal cosmological models derived from string field theory”, Phys. Rev. D, 76:10 (2007), 105007, 12 pp., arXiv: [hep-th] 0707.1545 | DOI | MR

[8] Aref'eva I. Ya., Joukovskaya L. V., Vernov S. Yu., “Dynamics in nonlocal linear models in the Friedmann–Robertson–Walker metric”, J. Phys. A: Math. Theor., 41:30 (2008), 304003, arXiv: [hep-th] 0711.1364 | DOI | MR | Zbl

[9] Barnaby N., Cline J. M., “Predictions for nongaussianity from nonlocal inflation”, JCAP, 2008:06 (2008), 030, arXiv: [hep-th] 0802.3218 | DOI

[10] Aref'eva I. Ya., Koshelev A. S., “Cosmological signature of tachyon condensation”, JHEP, 2008:09, 068, 20 pp., arXiv: [hep-th] 0804.3570 | DOI | MR | Zbl

[11] Mulryne D. J., Nunes N. J., “Diffusing nonlocal infation: Solving the feld equations as an initial value problem”, Phys. Rev. D, 78:06 (2008), 063519, 16 pp., arXiv: [hep-th] 0805.0449 | DOI | MR

[12] Joukovskaya L. V., “Dynamics with infinitely many time derivatives in Friedmann–Robertson0-Walker background and rolling tachyon”, JHEP, 2009:02 (2009), 045, 18 pp., arXiv: [hep-th] 0807.2065 | DOI | MR | Zbl

[13] Barnaby N., Kamran N., “Dynamics with infinitely many derivatives: Variable coefficient equations”, JHEP, 2008:12 (2008), 022, 27 pp., arXiv: [hep-th] 0809.4513 | DOI | MR

[14] Mulryne D. J., Nunes N. J., “Non-linear non-local cosmology”, AIP Conf. Proc., 1115 (2009), 329–334, arXiv: [astro-ph] 0810.5471

[15] Barnaby N., “Nonlocal inflation”, Can. J. Phys., 87:2009, 189–194, arXiv: [hep-th] 0811.0814

[16] Calcagni G., Nardelli G., “Nonlocal gravity and the diffusion equation”, Phys. Rev. D, 82:12 (2010), 123518, 17 pp., arXiv: [hep-th] 1004.5144 | DOI

[17] Koshelev A. S., Vernov S. Yu., “Analysis of scalar perturbations in cosmological models with a non-local scalar field”, Class. Quantum Grav., 28:8 (2011), 08501, arXiv: [hep-th] 1009.0746 | DOI

[18] Galli F., Koshelev A. S., Perturbative stability of SFT-based cosmological models, arXiv: [hep-th] 1011.5672

[19] Aref'eva I. Ya., Puzzles with tachyon in SSFT and cosmological applications, arXiv: [hep-th] 1101.5338 | MR

[20] Aref'eva I. Ya., Volovich I. V., Cosmological daemon, arXiv: [hep-th] 1103.0273

[21] Volovich I. V., “$p$-Adic string”, Class. Quant. Grav., 4:4 (1987), L83 | DOI | MR

[22] Brekke L., Freund P. G. O., Olson M., Witten E., “Non-archimedean string dynamics”, Nucl. Phys. B, 302:3 (1988), 365–402 | DOI | MR

[23] Frampton P. H., Okada Ya., “Effective scalar field theory of $p$-adic string”, Phys. Rev. D, 37:10 (1988), 3077–3079 | DOI | MR

[24] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adic analysis and mathematical physics, v. 1, Series on Soviet and East European Mathematics, World Scientific Publishing Co., Inc., River Edge, NJ, 1994, 319 pp. | MR | MR | Zbl | Zbl

[25] Dragovich B., Khrennikov A. Yu., Kozyrev S. V., Volovich I. V., “On $p$-adic mathematical physics”, $p$-Adic Numbers, Ultrametric Analysis, and Applications, 1:1 (2009), 1–17, arXiv: [math-ph] 0904.4205 | DOI | MR | Zbl

[26] Vladimirov V. S., Volovich Ya. I., Theor. Math. Phys., 138:3 (2004), 297–309, arXiv: math-ph/0306018 | DOI | DOI | MR | Zbl

[27] Moeller N., Zwiebach B., “Dynamics with infinitely many time derivatives and rolling tachyons”, JHEP, 2002:10 (2002), 034, 39 pp., arXiv: hep-th/0207107 | DOI | MR

[28] Volovich Ya. I., “Numerical study of nonlinear equations with infinite number of derivatives”, J. Phys. A: Math. Gen., 36:32 (2003), 8685, arXiv: math-ph/0301028 | DOI | MR | Zbl

[29] Vladimirov V. S., “The equation of the $p$-adic open string for the scalar tachyon field”, Izv. Math., 69:3 (2005), 487–512, arXiv: math-ph/0507018 | DOI | DOI | MR | Zbl

[30] Vladimirov V. S., “The question of the asymptotic behavior as $|t|\to\infty$ of boundary value problem solutions for $p$-ADIC strings”, Theoret. and Math. Phys., 157:3 (2008), 1638–1645 | DOI | DOI | MR | Zbl

[31] Gorka P., Prado H., Reyes E. G., “Functional calculus via Laplace transform and equations with infinitely many derivatives”, J. Math. Phys., 51:10 (2010), 103512, 10 pp. | DOI | MR

[32] Davis H. T., The theory of linear operators from the standpoint of differential equations of infinite order, Monograph of the Waterman institute of Indiana university (contribution no. 72), Principia Press, Bloomington, Ind., 1936, 628 pp.

[33] Carleson L., “On infinite differential equations with constant coefficients. I”, Math. Scand., 1 (1953), 31–38 | MR | Zbl

[34] Hörmander L., The analysis of linear partial differential operators, v. II, Differential operators with constant coefficients, Reprint of the 1983 Edition, Springer, Berlin, Heidelberg, 2005, 394 pp. | Zbl

[35] Arabadzhyan L. G., Engibaryan N. B., “Convolution equations and nonlinear functional equations”, J. Soviet Math., 36:6 (1987), 745–791 | DOI | MR | Zbl

[36] Khachatryan A. Kh., Khachatryan Kh. A., “A nonlinear integral equation of Hammerstein type with a noncompact operator”, Sb. Math., 201:4 (2010), 595–606 | DOI | DOI | MR | Zbl

[37] Hawking S., Ellis J., The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, I, Cambridge University Press, Cambridge, 1973, 391 pp. | MR

[38] Fock V., “Die eigenzeit in der klassichen und in der quantenmechanick”, Phys. Z. Sowetunion, 12:4 (1937), 404–425 | Zbl | Zbl

[39] Feynman R. P., “Mathematical formulation of the quantum theory of electromagnetic interaction”, Phys. Rev., 80:3 (1950), 440–457 | DOI | MR | Zbl

[40] Pais A., Uhlenbeck G. E., “On field theories with non-localized action”, Phys. Rev., 79:1 (1950), 145–165 | DOI | MR | Zbl

[41] Vladimirov V. S., Equations of mathematical physics, Nauka, Moscow, 1971, 512 pp. | MR | Zbl

[42] Linde A., Inflation and Quantum cosmology, Academic Press, Boston, MA (USA), 1990, 211 pp. | MR | Zbl