Solution in explicit form of non-local problem for differential equation with partial fractional derivative of Riemann--Liouville
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 151-157

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-local problem for a mixed type equation with partial fractional derivative of Riemann–Liouville is studied, boundary condition of which contains generalized operator of fractional integro-differentiation. Unique solution of the problem is then proved.
Keywords: boundary-value problem, fractional derivatives and integrals, fractional differential equation, Mittag–Leffler function.
@article{VSGTU_2011_1_a19,
     author = {S. A. Sayganova},
     title = {Solution in explicit form of non-local problem for differential equation with partial fractional derivative of {Riemann--Liouville}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {151--157},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a19/}
}
TY  - JOUR
AU  - S. A. Sayganova
TI  - Solution in explicit form of non-local problem for differential equation with partial fractional derivative of Riemann--Liouville
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 151
EP  - 157
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a19/
LA  - ru
ID  - VSGTU_2011_1_a19
ER  - 
%0 Journal Article
%A S. A. Sayganova
%T Solution in explicit form of non-local problem for differential equation with partial fractional derivative of Riemann--Liouville
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 151-157
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a19/
%G ru
%F VSGTU_2011_1_a19
S. A. Sayganova. Solution in explicit form of non-local problem for differential equation with partial fractional derivative of Riemann--Liouville. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 151-157. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a19/