On classical and functional approachs to mechanics
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 134-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the relevance of the classical trajectory of the anharmonic oscillator and the average trajectory obtained within the functional approach is considered. Dependence of threshold time of divergence of trajectories on dispersion of initial values is derived.
Keywords: functional mechanics, classical mechanics, model system, anharmonic oscillator, threshold time.
@article{VSGTU_2011_1_a17,
     author = {E. V. Piskovskiy},
     title = {On classical and functional approachs to mechanics},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {134--139},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a17/}
}
TY  - JOUR
AU  - E. V. Piskovskiy
TI  - On classical and functional approachs to mechanics
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 134
EP  - 139
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a17/
LA  - ru
ID  - VSGTU_2011_1_a17
ER  - 
%0 Journal Article
%A E. V. Piskovskiy
%T On classical and functional approachs to mechanics
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 134-139
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a17/
%G ru
%F VSGTU_2011_1_a17
E. V. Piskovskiy. On classical and functional approachs to mechanics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 134-139. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a17/

[1] Volovich I. V., “Time Irreversibility Problem and Functional Formulation of Classical Mechanics”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008, no. 8/1(67), 35–55

[2] Volovich I. V., “Randomness in Classical Mechanics and Quantum Mechanics”, Found. Phys., 41:3 (2010), 516–528 | DOI

[3] Kozlov V. V., Gibbs ensembles and non-equilibrium statistical mechanics, Regulyarnaya i Khaoticheskaya Dinamika, Moscow, Izhevsk, 2008, 204 pp.

[4] Volovich I. V., “Functional mechanics and time irreversibility problem”, Quantum Bio-Informatics III. From Quantum Information to Bio-Informatics (Tokyo University of Science, Japan, 11–14 March 2009), QP-PQ: Quantum Probability and White Noise Analysis, 26, 2010, 393–404 | DOI

[5] Trushechkin A. S., Volovich I. V., “Functional classical mechanics and rational numbers”, $p$-Adic Numbers, Ultrametric Analysis, and Applications, 1:4 (2009), 361–367, arXiv: [math-ph] 0910.1502 | DOI | MR | Zbl

[6] Trushechkin A. S., “Irreversibility and the role of an instrument in the functional formulation of classical mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1198–1201 | DOI | DOI | Zbl

[7] Volovich I. V., “Bogoliubov equations and functional mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1128–1135 | DOI | DOI | Zbl

[8] Inoue K., Ohya M., Volovich I. V., “Semiclassical properties and chaos degree for the quantum baker's map”, J. Math. Phys., 43:2 (2002), 734–755 | DOI | MR | Zbl

[9] Lichtenberg A. J., Lieberman M. A., Regular and Stochastic Motion, Applied Mathematical Sciences, 38, Springer-Verlag, New York, 1983, 449 pp. ; Likhtenberg A., Liberman M., Regulyarnaya i stokhasticheskaya dinamika, Mir, M., 1984, 528 pp. | DOI | MR | Zbl

[10] Arnol'd V. I., Avez A., Problèemes ergodiques de la mćanique classique (in French), Monographies internationales de mathematiques modernes, 9, Gauthier-Villars, Paris, 1967, 243 pp. ; Arnold V. I., Avets A., Ergodicheskie problemy klassicheskoi mekhaniki, Regulyarnaya i khaoticheskaya dinamika, 11, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 1999, 281 pp. | MR | Zbl | Zbl

[11] Bogoliubov N. N., Mitropolsky Y. A., Asymptotic methods in the theory of non-linear oscillations, Gordon and Breach, New York, 1961, 537 pp. | MR | MR

[12] Birkhoff G., MacLane S., A Survey of Modern Algebra, Macmillan Publishing, New York, 1977, 512 pp. | Zbl