Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_1_a17, author = {E. V. Piskovskiy}, title = {On classical and functional approachs to mechanics}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {134--139}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a17/} }
TY - JOUR AU - E. V. Piskovskiy TI - On classical and functional approachs to mechanics JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 134 EP - 139 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a17/ LA - ru ID - VSGTU_2011_1_a17 ER -
E. V. Piskovskiy. On classical and functional approachs to mechanics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 134-139. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a17/
[1] Volovich I. V., “Time Irreversibility Problem and Functional Formulation of Classical Mechanics”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008, no. 8/1(67), 35–55
[2] Volovich I. V., “Randomness in Classical Mechanics and Quantum Mechanics”, Found. Phys., 41:3 (2010), 516–528 | DOI
[3] Kozlov V. V., Gibbs ensembles and non-equilibrium statistical mechanics, Regulyarnaya i Khaoticheskaya Dinamika, Moscow, Izhevsk, 2008, 204 pp.
[4] Volovich I. V., “Functional mechanics and time irreversibility problem”, Quantum Bio-Informatics III. From Quantum Information to Bio-Informatics (Tokyo University of Science, Japan, 11–14 March 2009), QP-PQ: Quantum Probability and White Noise Analysis, 26, 2010, 393–404 | DOI
[5] Trushechkin A. S., Volovich I. V., “Functional classical mechanics and rational numbers”, $p$-Adic Numbers, Ultrametric Analysis, and Applications, 1:4 (2009), 361–367, arXiv: [math-ph] 0910.1502 | DOI | MR | Zbl
[6] Trushechkin A. S., “Irreversibility and the role of an instrument in the functional formulation of classical mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1198–1201 | DOI | DOI | Zbl
[7] Volovich I. V., “Bogoliubov equations and functional mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1128–1135 | DOI | DOI | Zbl
[8] Inoue K., Ohya M., Volovich I. V., “Semiclassical properties and chaos degree for the quantum baker's map”, J. Math. Phys., 43:2 (2002), 734–755 | DOI | MR | Zbl
[9] Lichtenberg A. J., Lieberman M. A., Regular and Stochastic Motion, Applied Mathematical Sciences, 38, Springer-Verlag, New York, 1983, 449 pp. ; Likhtenberg A., Liberman M., Regulyarnaya i stokhasticheskaya dinamika, Mir, M., 1984, 528 pp. | DOI | MR | Zbl
[10] Arnol'd V. I., Avez A., Problèemes ergodiques de la mćanique classique (in French), Monographies internationales de mathematiques modernes, 9, Gauthier-Villars, Paris, 1967, 243 pp. ; Arnold V. I., Avets A., Ergodicheskie problemy klassicheskoi mekhaniki, Regulyarnaya i khaoticheskaya dinamika, 11, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 1999, 281 pp. | MR | Zbl | Zbl
[11] Bogoliubov N. N., Mitropolsky Y. A., Asymptotic methods in the theory of non-linear oscillations, Gordon and Breach, New York, 1961, 537 pp. | MR | MR
[12] Birkhoff G., MacLane S., A Survey of Modern Algebra, Macmillan Publishing, New York, 1977, 512 pp. | Zbl