The functional mechanics: Evolution of the moments of distribution function and the Poincar\'e recurrence theorem
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 124-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of modern approaches to a problem of the coordination of classical mechanics and the statistical physics — the functional mechanics is considered. Deviations from classical trajectories are calculated and evolution of the moments of distribution function is constructed. The relation between the received results and absence of paradox of Poincaré–Zermelo in the functional mechanics is discussed. Destruction of periodicity of movement in the functional mechanics is shown and decrement of attenuation for classical invariants of movement on a trajectory of functional mechanical averages is calculated.
Keywords: classical mechanics, irreversibility problem
Mots-clés : Liouville equation.
@article{VSGTU_2011_1_a16,
     author = {A. I. Mikhailov},
     title = {The functional mechanics: {Evolution} of the moments of distribution function  and the {Poincar\'e} recurrence theorem},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {124--133},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a16/}
}
TY  - JOUR
AU  - A. I. Mikhailov
TI  - The functional mechanics: Evolution of the moments of distribution function  and the Poincar\'e recurrence theorem
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 124
EP  - 133
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a16/
LA  - ru
ID  - VSGTU_2011_1_a16
ER  - 
%0 Journal Article
%A A. I. Mikhailov
%T The functional mechanics: Evolution of the moments of distribution function  and the Poincar\'e recurrence theorem
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 124-133
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a16/
%G ru
%F VSGTU_2011_1_a16
A. I. Mikhailov. The functional mechanics: Evolution of the moments of distribution function  and the Poincar\'e recurrence theorem. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 124-133. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a16/

[1] Bogoluybov N. N., Problems of a dynamical theory in statistical physics, Studies in statistical mechanics, 1, North-Holland, Amsterdam; Interscience, New York, 1962, 118 pp. | MR | MR

[2] Prigogine I., From being to becoming: time and complexity in the physical sciences, W. H. Freeman and Co., San Francisco, 1980, 272 pp. ; Prigozhin I., Ot suschestvuyuschego k voznikayuschemu: vremya i slozhnost v fizicheskikh naukakh, Sinergetika: ot proshlogo k buduschemu, izd. 3-e, dop.; per. s angl., ed. Yu. Klimontovich, URSS, M., 2006, 296 pp.

[3] Volovich I. V., “Time Irreversibility Problem and Functional Formulation of Classical Mechanics”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008, no. 8/1(67), 35–55

[4] Trushechkin A. S., “Irreversibility and the role of an instrument in the functional formulation of classical mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1198–1201 | DOI | DOI | Zbl

[5] Tikhonov A. N., Vasil'eva A. B., Sveshnikov A. G., Differential equations, Springer-Verlag, Berlin etc., 1985, 238 pp. | MR | Zbl

[6] Pontryagin L. S., Ordinary Differential Equations, Addison–Wesley, London, 1962, 298 pp. | MR | MR | Zbl | Zbl

[7] Kozlov V. V., Thermal equilibrium in the sense of Gibbs and Poincaré, Institut Komp'yuternykh Issledovanij, Moscow, Izhevsk, 2002, 320 pp. | MR | Zbl