Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_1_a16, author = {A. I. Mikhailov}, title = {The functional mechanics: {Evolution} of the moments of distribution function and the {Poincar\'e} recurrence theorem}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {124--133}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a16/} }
TY - JOUR AU - A. I. Mikhailov TI - The functional mechanics: Evolution of the moments of distribution function and the Poincar\'e recurrence theorem JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 124 EP - 133 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a16/ LA - ru ID - VSGTU_2011_1_a16 ER -
%0 Journal Article %A A. I. Mikhailov %T The functional mechanics: Evolution of the moments of distribution function and the Poincar\'e recurrence theorem %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 124-133 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a16/ %G ru %F VSGTU_2011_1_a16
A. I. Mikhailov. The functional mechanics: Evolution of the moments of distribution function and the Poincar\'e recurrence theorem. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 124-133. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a16/
[1] Bogoluybov N. N., Problems of a dynamical theory in statistical physics, Studies in statistical mechanics, 1, North-Holland, Amsterdam; Interscience, New York, 1962, 118 pp. | MR | MR
[2] Prigogine I., From being to becoming: time and complexity in the physical sciences, W. H. Freeman and Co., San Francisco, 1980, 272 pp. ; Prigozhin I., Ot suschestvuyuschego k voznikayuschemu: vremya i slozhnost v fizicheskikh naukakh, Sinergetika: ot proshlogo k buduschemu, izd. 3-e, dop.; per. s angl., ed. Yu. Klimontovich, URSS, M., 2006, 296 pp.
[3] Volovich I. V., “Time Irreversibility Problem and Functional Formulation of Classical Mechanics”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008, no. 8/1(67), 35–55
[4] Trushechkin A. S., “Irreversibility and the role of an instrument in the functional formulation of classical mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1198–1201 | DOI | DOI | Zbl
[5] Tikhonov A. N., Vasil'eva A. B., Sveshnikov A. G., Differential equations, Springer-Verlag, Berlin etc., 1985, 238 pp. | MR | Zbl
[6] Pontryagin L. S., Ordinary Differential Equations, Addison–Wesley, London, 1962, 298 pp. | MR | MR | Zbl | Zbl
[7] Kozlov V. V., Thermal equilibrium in the sense of Gibbs and Poincaré, Institut Komp'yuternykh Issledovanij, Moscow, Izhevsk, 2002, 320 pp. | MR | Zbl