Dirac--Yang--Mills model equations with~a~spinor gauge symmetry
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 118-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the developed model where spin $1/2$ fermions acquire masses by an interaction with (spin $1$) gauge field with spinor symmetry. Particle mass is determined by the constant interaction of the particle with the gauge field.
Mots-clés : Dirac equation
Keywords: Yang–Mills equations, gauge symmetry, spinor group.
@article{VSGTU_2011_1_a15,
     author = {N. G. Marchuk},
     title = {Dirac--Yang--Mills model equations with~a~spinor gauge symmetry},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {118--123},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a15/}
}
TY  - JOUR
AU  - N. G. Marchuk
TI  - Dirac--Yang--Mills model equations with~a~spinor gauge symmetry
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 118
EP  - 123
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a15/
LA  - ru
ID  - VSGTU_2011_1_a15
ER  - 
%0 Journal Article
%A N. G. Marchuk
%T Dirac--Yang--Mills model equations with~a~spinor gauge symmetry
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 118-123
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a15/
%G ru
%F VSGTU_2011_1_a15
N. G. Marchuk. Dirac--Yang--Mills model equations with~a~spinor gauge symmetry. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 118-123. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a15/

[1] Marchuk N. G., “Model Dirac–Maxwell equations with pseudounitary symmetry”, Theoret. and Math. Phys., 157:3 (2008), 1723–1732 | DOI | DOI | MR | Zbl

[2] Marchuk N. G., Equations of field theory and Clifford algebras, RKhD, Moscow, Izhevsk, 2009, 304 pp.

[3] Marchuk N. G., Shirokov D. S., “Unitary spaces on Clifford algebras”, Adv. in Appl. Cliff. Alg., 18:2 (2008), 237–254 | DOI | MR | Zbl

[4] Lounesto P., Clifford algebras and spinors, L.M.S. Lecture Notes, 239, Cambridge Univ. Press, Cambridge, 1997, 306 pp. | MR | Zbl

[5] Marchuk N., Dyabirov R., “A symplectic subgroup of a pseudounitary group as a subset of Clifford algebra”, Adv. in Appl. Cliff. Alg., 20:2 (2009), 343–350 | DOI | MR