Multidimensional $p$-adic metric and genetic code
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 113-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the family of metrics in multimensional $p$-adic spaces. For a metric under consideration the set of balls differs from the set of balls for the standard multidimensional metric. Moreover, we it is possible to consider the metrics for which the form of the sets of balls depends on the scale and position. As the example of the introduced metric spaces we study the $2$-adic parametrization of the genetic code. We show that the degeneracy of the genetic code is described by the metric space from the considered family, i.e. the map of the genetic code is constant for the balls with respect to the metric from the introduced class.
Keywords: genetic code, ultrametric.
@article{VSGTU_2011_1_a14,
     author = {S. V. Kozyrev and A. Yu. Khrennikov},
     title = {Multidimensional $p$-adic metric and genetic code},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {113--117},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a14/}
}
TY  - JOUR
AU  - S. V. Kozyrev
AU  - A. Yu. Khrennikov
TI  - Multidimensional $p$-adic metric and genetic code
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 113
EP  - 117
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a14/
LA  - ru
ID  - VSGTU_2011_1_a14
ER  - 
%0 Journal Article
%A S. V. Kozyrev
%A A. Yu. Khrennikov
%T Multidimensional $p$-adic metric and genetic code
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 113-117
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a14/
%G ru
%F VSGTU_2011_1_a14
S. V. Kozyrev; A. Yu. Khrennikov. Multidimensional $p$-adic metric and genetic code. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 113-117. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a14/

[1] Albeverio S., Kozyrev S. V., “Multidimensional $p$-adic wavelets for the deformed metric”, $p$-Adic Numbers, Ultrametric Analysis, and Applications, 2:4 (2010), 265–277 | DOI | MR | Zbl

[2] Albeverio S., Kozyrev S. V., “Pseudodifferential $p$-adic vector fields and pseudodifferentiation of a composite $p$-adic function”, $p$-Adic Numbers, Ultrametric Analysis, and Applications, 2:1 (2010), 21–34 | DOI | MR | Zbl

[3] Koonin E. V., Novozhilov A. S., “Origin and Evolution of the Genetic Code: The Universal Enigma”, IUBMB Life, 61(2), February (2009), 99–111, arXiv: 0807.4749 | DOI

[4] Khrennikov A. Yu., Kozyrev S. V., “Genetic code on the dyadic plane”, Physica A, 381 (2007), 265–272, arXiv: q-bio/0701007 | DOI

[5] Khrennikov A. Yu., Kozyrev S. V., “2-Adic clustering of the PAM matrix”, Journal of Theoretical Biology, 261 (2009), 396–406, arXiv: 0903.0137 | DOI

[6] Kozyrev S. V., Khrennikov A. Yu., “2-Adic numbers in genetics and Rumer's symmetry”, Dokl. Math., 81:1 (2010), 128–130 | DOI | MR | Zbl

[7] Dragovich B., Dragovich A., “A $p$-Adic Model of DNA Sequence and Genetic Code”, $p$-Adic Numbers, Ultrametric Analysis and Applications, 1:1 (2009), 34–41, arXiv: q-bio/0607018v1 | DOI | MR | Zbl

[8] Khrennikov A. Yu., “Gene expression from polynomial dynamics in the 2-adic information space”, Chaos, Solitons, and Fractals, 42:1 (2009), 341–347 | DOI | MR | Zbl