Special solutions of matrix Gellerstedt equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 108-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fundamental solutions for the Gellerstedt equation and its generalization were obtained in the distribution space using the method applied by I. M. Gelfand and J. Barros-Neto to the studying the Tricomi equation. The degenerating system of the mixed-type partial differential equations was considered, its special solutions were constructed in the regions bounded by the characteristics of these equations (in the hyperbolic half-plane). The elements of the theory of matrices, theory of the generalized functions and the special functions (hypergeometric series) were used for this construction.
Keywords: fundamental solution, generalized functions, matrix functions.
@article{VSGTU_2011_1_a13,
     author = {E. A. Kozlova},
     title = {Special solutions of matrix {Gellerstedt} equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {108--112},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a13/}
}
TY  - JOUR
AU  - E. A. Kozlova
TI  - Special solutions of matrix Gellerstedt equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 108
EP  - 112
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a13/
LA  - ru
ID  - VSGTU_2011_1_a13
ER  - 
%0 Journal Article
%A E. A. Kozlova
%T Special solutions of matrix Gellerstedt equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 108-112
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a13/
%G ru
%F VSGTU_2011_1_a13
E. A. Kozlova. Special solutions of matrix Gellerstedt equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 108-112. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a13/

[1] Vladimirov V. S., Equations of mathematical physics, Nauka, Moscow, 1981, 512 pp. | MR

[2] Barros-Neto J., Gelfand I. M., “Fundamental solutions for the Tricomi operator”, Duke Math. J., 98:3 (1999), 465–483 | DOI | MR | Zbl

[3] Barros-Neto J., Gelfand I. M., “Fundamental solutions for the Tricomi operator, II”, Duke Math. J., 111:3 (2002), 561–584 | DOI | MR | Zbl

[4] Barros-Neto J., Gelfand I. M., “Fundamental solutions for the Tricomi operator, III”, Duke Math. J., 128:1 (2005), 119–140 | DOI | MR | Zbl

[5] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1953, 302 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t, v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973, 296 pp. | MR | Zbl | MR

[6] Gellerstedt S., “Quelques problèmes mixtes pour l'équation $y^mz_{xx}+z_{yy}=0$”, Ark. Mat. Astron. Fys. A, 26:3 (1937), 1–32 | Zbl

[7] Gantmakher F. R., Theory of matrices, Nauka, Moscow, 1988, 549 pp. | MR | Zbl