Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_1_a13, author = {E. A. Kozlova}, title = {Special solutions of matrix {Gellerstedt} equation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {108--112}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a13/} }
TY - JOUR AU - E. A. Kozlova TI - Special solutions of matrix Gellerstedt equation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 108 EP - 112 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a13/ LA - ru ID - VSGTU_2011_1_a13 ER -
E. A. Kozlova. Special solutions of matrix Gellerstedt equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 108-112. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a13/
[1] Vladimirov V. S., Equations of mathematical physics, Nauka, Moscow, 1981, 512 pp. | MR
[2] Barros-Neto J., Gelfand I. M., “Fundamental solutions for the Tricomi operator”, Duke Math. J., 98:3 (1999), 465–483 | DOI | MR | Zbl
[3] Barros-Neto J., Gelfand I. M., “Fundamental solutions for the Tricomi operator, II”, Duke Math. J., 111:3 (2002), 561–584 | DOI | MR | Zbl
[4] Barros-Neto J., Gelfand I. M., “Fundamental solutions for the Tricomi operator, III”, Duke Math. J., 128:1 (2005), 119–140 | DOI | MR | Zbl
[5] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1953, 302 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t, v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973, 296 pp. | MR | Zbl | MR
[6] Gellerstedt S., “Quelques problèmes mixtes pour l'équation $y^mz_{xx}+z_{yy}=0$”, Ark. Mat. Astron. Fys. A, 26:3 (1937), 1–32 | Zbl
[7] Gantmakher F. R., Theory of matrices, Nauka, Moscow, 1988, 549 pp. | MR | Zbl