Special solutions of matrix Gellerstedt equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 108-112

Voir la notice de l'article provenant de la source Math-Net.Ru

Fundamental solutions for the Gellerstedt equation and its generalization were obtained in the distribution space using the method applied by I. M. Gelfand and J. Barros-Neto to the studying the Tricomi equation. The degenerating system of the mixed-type partial differential equations was considered, its special solutions were constructed in the regions bounded by the characteristics of these equations (in the hyperbolic half-plane). The elements of the theory of matrices, theory of the generalized functions and the special functions (hypergeometric series) were used for this construction.
Keywords: fundamental solution, generalized functions, matrix functions.
@article{VSGTU_2011_1_a13,
     author = {E. A. Kozlova},
     title = {Special solutions of matrix {Gellerstedt} equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {108--112},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a13/}
}
TY  - JOUR
AU  - E. A. Kozlova
TI  - Special solutions of matrix Gellerstedt equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 108
EP  - 112
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a13/
LA  - ru
ID  - VSGTU_2011_1_a13
ER  - 
%0 Journal Article
%A E. A. Kozlova
%T Special solutions of matrix Gellerstedt equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 108-112
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a13/
%G ru
%F VSGTU_2011_1_a13
E. A. Kozlova. Special solutions of matrix Gellerstedt equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 108-112. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a13/