Simple proof of the adiabatic theorem
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 99-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

Simple proof of the adiabatic theorem is given in a finite dimensional case for nondegenerate as well as degenerate states. The estimate is obtained for the deviation of the norm of the solution of the Shchrödinger equation which is uniform on the parameter in the Hamiltonian.
Keywords: adiabatic theorem, quantum mechanics.
@article{VSGTU_2011_1_a12,
     author = {M. O. Katanaev},
     title = {Simple proof of the adiabatic theorem},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {99--107},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a12/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Simple proof of the adiabatic theorem
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 99
EP  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a12/
LA  - ru
ID  - VSGTU_2011_1_a12
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Simple proof of the adiabatic theorem
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 99-107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a12/
%G ru
%F VSGTU_2011_1_a12
M. O. Katanaev. Simple proof of the adiabatic theorem. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 99-107. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a12/

[1] Born M., Fock V., “Proof of the adiabatic theorem”, V. A. Fock – Selected Works: Quantum Mechanics and Quantum Field Theory, eds. L. D. Faddeev, L. A. Khalfin, I. V. Komarov, Chapman Hall/CRC, Boca Raton, FL, 2004, 69–86 | DOI | MR | Zbl

[2] Messiah A., Quantum Mechanics, v. 2, North Holland, Amsterdam, 1962 ; Messia A., Kvantovaya mekhanika, v. 2, Nauka, M., 1979, 584 pp. | Zbl | MR

[3] Joye A., Geometrical and mathematical aspects of the adiabatic theorem of quantum mechanics, PHD thesis No. 1022, Ecole Polytechnique Federal de Lausanne, 1992

[4] Teufel S., Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Mathematics, 1821, Springer, Berlin, 2003, 236 pp. | DOI | MR | Zbl

[5] Levi M., “Adiabatic invariants of the linear Hamiltonian systems with periodic coefficients”, J. Differential Equations, 42:1 (1981), 47–71 | DOI | MR | Zbl

[6] Arnold V. I., “Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect”, Sel. Math., New Ser., 1:1 (1995), 1–19 | DOI | MR | Zbl

[7] Arnol'd V. I., Kozlov V. V. Neishtadt A. I., Mathematical aspects of classical and celestial mechanics, Editorial URSS, Moscow, 2002, 414 pp.

[8] Schrödinger E., “Quantisierung als Eigenwertproblem (Erste Mitteilung)”, Annalen der Physik, 79:4 (1926), 361–376 ; Shrëdinger E., “Kvantovanie kak zadacha o sobstvennykh znacheniyakh (pervoe soobschenie)”, UFN, 122:8 (1977), 621—632 | DOI

[9] Schrödinger E., “Quantisierung als Eigenwertproblem (Zweite Mitteilung)”, Annalen der Physik, 79:6 (1926), 489–527 | DOI | Zbl

[10] Vladimirov V. S., Volovich I. V., “Local and nonlocal currents for nonlinear equations”, Theoret. and Math. Phys., 62:1 (1985), 1–20 | DOI | MR | Zbl

[11] Vladimirov V. S., “Conservation laws for non-linear equations”, Russian Math. Surveys, 40:4 (1985), 13–24 | DOI | MR | Zbl

[12] Katanaev M. O., “Adiabatic theorem for finite-dimensional quantum mechanical systems”, Izvest. vuzov. Fizika, 54 (2011), arXiv: [math-ph] 0909.0370 | DOI | Zbl