Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2011_1_a12, author = {M. O. Katanaev}, title = {Simple proof of the adiabatic theorem}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {99--107}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a12/} }
TY - JOUR AU - M. O. Katanaev TI - Simple proof of the adiabatic theorem JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 99 EP - 107 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a12/ LA - ru ID - VSGTU_2011_1_a12 ER -
M. O. Katanaev. Simple proof of the adiabatic theorem. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 99-107. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a12/
[1] Born M., Fock V., “Proof of the adiabatic theorem”, V. A. Fock – Selected Works: Quantum Mechanics and Quantum Field Theory, eds. L. D. Faddeev, L. A. Khalfin, I. V. Komarov, Chapman Hall/CRC, Boca Raton, FL, 2004, 69–86 | DOI | MR | Zbl
[2] Messiah A., Quantum Mechanics, v. 2, North Holland, Amsterdam, 1962 ; Messia A., Kvantovaya mekhanika, v. 2, Nauka, M., 1979, 584 pp. | Zbl | MR
[3] Joye A., Geometrical and mathematical aspects of the adiabatic theorem of quantum mechanics, PHD thesis No. 1022, Ecole Polytechnique Federal de Lausanne, 1992
[4] Teufel S., Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Mathematics, 1821, Springer, Berlin, 2003, 236 pp. | DOI | MR | Zbl
[5] Levi M., “Adiabatic invariants of the linear Hamiltonian systems with periodic coefficients”, J. Differential Equations, 42:1 (1981), 47–71 | DOI | MR | Zbl
[6] Arnold V. I., “Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect”, Sel. Math., New Ser., 1:1 (1995), 1–19 | DOI | MR | Zbl
[7] Arnol'd V. I., Kozlov V. V. Neishtadt A. I., Mathematical aspects of classical and celestial mechanics, Editorial URSS, Moscow, 2002, 414 pp.
[8] Schrödinger E., “Quantisierung als Eigenwertproblem (Erste Mitteilung)”, Annalen der Physik, 79:4 (1926), 361–376 ; Shrëdinger E., “Kvantovanie kak zadacha o sobstvennykh znacheniyakh (pervoe soobschenie)”, UFN, 122:8 (1977), 621—632 | DOI
[9] Schrödinger E., “Quantisierung als Eigenwertproblem (Zweite Mitteilung)”, Annalen der Physik, 79:6 (1926), 489–527 | DOI | Zbl
[10] Vladimirov V. S., Volovich I. V., “Local and nonlocal currents for nonlinear equations”, Theoret. and Math. Phys., 62:1 (1985), 1–20 | DOI | MR | Zbl
[11] Vladimirov V. S., “Conservation laws for non-linear equations”, Russian Math. Surveys, 40:4 (1985), 13–24 | DOI | MR | Zbl
[12] Katanaev M. O., “Adiabatic theorem for finite-dimensional quantum mechanical systems”, Izvest. vuzov. Fizika, 54 (2011), arXiv: [math-ph] 0909.0370 | DOI | Zbl