The solution of the full matrix analogue of the generalized Abel equation with constant coefficients
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 93-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of generalized integral Abel equations in the matrix form with constant coefficients on the segment. Was considered at the terms of the integral Riemann–Liouville operators of matrix order. It's reduction to the system of singular integral equations was founded. Solution of this system was found for the case of the commutative matrices of the simple structure in the explicit form.
Mots-clés : fractional calculus
Keywords: functions of matrix argument, integro-differential operators matrix order, system of generalized Abel integral equation.
@article{VSGTU_2011_1_a11,
     author = {R. R. Ismagiliva},
     title = {The solution of the full matrix analogue of the generalized {Abel} equation with constant coefficients},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {93--98},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a11/}
}
TY  - JOUR
AU  - R. R. Ismagiliva
TI  - The solution of the full matrix analogue of the generalized Abel equation with constant coefficients
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 93
EP  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a11/
LA  - ru
ID  - VSGTU_2011_1_a11
ER  - 
%0 Journal Article
%A R. R. Ismagiliva
%T The solution of the full matrix analogue of the generalized Abel equation with constant coefficients
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 93-98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a11/
%G ru
%F VSGTU_2011_1_a11
R. R. Ismagiliva. The solution of the full matrix analogue of the generalized Abel equation with constant coefficients. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 93-98. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a11/

[1] Nakhushev A. M., Fractional Calculus and Its Applications, Fizmatlit, Moscow, 2003, 272 pp. | Zbl

[2] Samko S. G., Kilbas A. A., Marichev O. I., Integrals and derivatives of fractional order and some of their applications, Nauka i Tekhnika, Minsk, 1987, 688 pp. | MR | Zbl

[3] Andreev A. A., “Non-local boundary value problems for one degenerate model system of hyperbolic type”, Boundary value problems for equations of mathematical physics, Kuibysh. Gos. Ped. In-t, Kuibyshev, 1990, 3–7

[4] Andreev A. A., “On one generalization of fractional integro-differentiation operators and its applications”, Integral Equations and Boundary Value Problems of Mathematical Physics, Vladivostok, 1990, 91

[5] Andreev A. A., Ogorodnikov E. N., “Matrix integro-differential operators and their application”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 1999, no. 7, 27–37 | DOI

[6] Ismagiliva R. R., “Properties of inversion operator of the Abel matrix equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 5(21) (2010), 237–243 | DOI

[7] Ismagiliva R. R., “On some properties of fractional integro-differentiation operators matrix order”, Proceedings of the Seventh All-Russian Scientific Conference with international participation. Part 3, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2010, 129–132

[8] Boundary Value Problems, Pergamon Press, Oxford, 1966, 561 pp. | MR | MR | Zbl

[9] Gantmakher F. R., Theory of matrices, Nauka, Moscow, 1988, 549 pp. | MR | Zbl