$p$-Adic BMO and VMO functions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 90-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spaces of $p$-adic BMO and VMO functions are considered. It is proved that locally constant functions are dense in VMO space under BMO norm.
Keywords: $p$-adic analysis, BMO functions, VMO functions.
@article{VSGTU_2011_1_a10,
     author = {E. I. Zelenov},
     title = {$p${-Adic} {BMO} and {VMO} functions},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {90--92},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a10/}
}
TY  - JOUR
AU  - E. I. Zelenov
TI  - $p$-Adic BMO and VMO functions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 90
EP  - 92
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a10/
LA  - ru
ID  - VSGTU_2011_1_a10
ER  - 
%0 Journal Article
%A E. I. Zelenov
%T $p$-Adic BMO and VMO functions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 90-92
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a10/
%G ru
%F VSGTU_2011_1_a10
E. I. Zelenov. $p$-Adic BMO and VMO functions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2011), pp. 90-92. http://geodesic.mathdoc.fr/item/VSGTU_2011_1_a10/

[1] Sarason D., Function theory on the unit circle, Notes for lectures at a conference at Virginia Polytechnic Institute and State University, Virginia Polytechnic Institute and State University, Blacksburg, Virginia., 1978, 144 pp. | MR | Zbl

[2] Rim K. S., Lee J., “Estimates of weighted Hardy-Littlewood averages on the $p$-adic vector space”, J. Math. Anal. Appl., 324:2 (2006), 1470–1477 | DOI | MR | Zbl

[3] Volosivets S. S., “Multidimensional Hausdorff operator on $p$-adic field”, $p$-Adic Numbers, Ultrametric Anal. Appl., 2:3 (2010), 252–259 | DOI | MR | Zbl