Rabotnov's Variational Equation of a Two-Layer Shell Model and the Critical Buckling Time of Reinforced Shells Under Creep
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 72-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Procedure of calculation of critical buckling time of shells under creep with use of Rabotnov's variation equation is presented. Comparison of critical times for the reinforced shells is calculated with use of three-layer model with experimental data and results obtained by other authors is also presented.
Keywords: critical buckling time, two-layer shell model, reinforced shells, creep.
@article{VSGTU_2010_5_a7,
     author = {Yu. M. Volchkov},
     title = {Rabotnov's {Variational} {Equation} of a {Two-Layer} {Shell} {Model} and the {Critical} {Buckling} {Time} of {Reinforced} {Shells} {Under} {Creep}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {72--78},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a7/}
}
TY  - JOUR
AU  - Yu. M. Volchkov
TI  - Rabotnov's Variational Equation of a Two-Layer Shell Model and the Critical Buckling Time of Reinforced Shells Under Creep
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 72
EP  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a7/
LA  - ru
ID  - VSGTU_2010_5_a7
ER  - 
%0 Journal Article
%A Yu. M. Volchkov
%T Rabotnov's Variational Equation of a Two-Layer Shell Model and the Critical Buckling Time of Reinforced Shells Under Creep
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 72-78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a7/
%G ru
%F VSGTU_2010_5_a7
Yu. M. Volchkov. Rabotnov's Variational Equation of a Two-Layer Shell Model and the Critical Buckling Time of Reinforced Shells Under Creep. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 72-78. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a7/

[1] Rabotnov Yu. N., “Priblizhennaya tekhnicheskaya teoriya uprugoplasticheskikh obolochek”, PMM, 1951, no. 2, 167–174 | MR | Zbl

[2] Rabotnov Yu. N., Polzuchest elementov konstruktsii, Nauka, M., 1965, 752 pp.

[3] Rabotnov Yu. N., “O variatsionnom uravnenii ustanovivsheisya polzuchesti obolochek”, Dokl. AN SSSR, 1666, no. 2, 300–303

[4] Volchkov Yu. M., “Osesimmetrichnye zadachi polzuchesti krugovykh tsilindricheskikh obolochek”, Izv. AN SSSR. Mekhanika, 1965, no. 5, 118–121

[5] Volchkov Yu. M., Nemirovskii Yu. V., “Nesimmetrichnoe vypuchivanie tsilindricheskikh obolochek v usloviyakh polzuchesti”, Izv. AN SSSR. MTT, 1967, no. 4, 136–138

[6] Volchkov Yu. M., Nemirovskii Yu. V., “Vypuchivanie trekhsloinykh tsilindricheskikh obolochek v usloviyakh polzuchesti”, Izv. AN SSSR. MTT, 1969, no. 5, 150–158

[7] Volchkov Yu. M., “Rabotnov’s two-layer model of a shell and critical time of shell buckling during creep”, J. Appl. Mech. Tech. Phys., 51:4 (2010), 615–622 | DOI | Zbl

[8] Kurshin L. M., Belov V. K., Gusev V. V., Ermakov V. P., Larionov I.F., “Vliyanie kratkovremennoi polzuchesti na ustoichivost gladkikh i vafelnykh obolochek”, Probl. prochnosti, 1975, no. 3, 95–97

[9] Ermakov V. P., Kuznetsov A. P., “Kratkovremennaya polzuchest splava AMg6 pri odnoosnom rastyazhenii”, PMTF, 1972, no. 1, 141–143

[10] Poshivalov V. P., “Vypuchivanie podkreplennykh tsilindricheskikh obolochek pri polzuchesti po teorii uprochneniya”, Izv. AN SSSR. MTT, 1987, no. 1, 153–158