The Dirichlet Problem in the 2D Stationary Anisotropic Thermoelasticity
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 64-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the Dirichlet problem for an anisotropic thermoelastic media is studied. It means, by definition, that a displacement vector and a stationary temperature are assigned at a boundary. This boundary value problem is reduced to a system of integral equations. Kernels of integral operators, entering into this system, are weakly regular in a bounded region with a Lyapunov boundary and Hölder continuous boundary data. This boundary value problem keeps up the property of Fredholm solvability if a region and boundary data have weaker properties of smoothness.
Keywords: integral equations, anisotropy, elasticity.
@article{VSGTU_2010_5_a6,
     author = {Yu. A. Bogan},
     title = {The {Dirichlet} {Problem} in the {2D} {Stationary} {Anisotropic} {Thermoelasticity}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {64--71},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a6/}
}
TY  - JOUR
AU  - Yu. A. Bogan
TI  - The Dirichlet Problem in the 2D Stationary Anisotropic Thermoelasticity
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 64
EP  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a6/
LA  - ru
ID  - VSGTU_2010_5_a6
ER  - 
%0 Journal Article
%A Yu. A. Bogan
%T The Dirichlet Problem in the 2D Stationary Anisotropic Thermoelasticity
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 64-71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a6/
%G ru
%F VSGTU_2010_5_a6
Yu. A. Bogan. The Dirichlet Problem in the 2D Stationary Anisotropic Thermoelasticity. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 64-71. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a6/

[1] Zhao Yu-Qui, “On the Plane Orthotropic Stress Problem of Quasi-Static Thermoelasticity”, J. Elasticity, 46:3 (1997), 199–216 | DOI | MR | Zbl

[2] Bogan Yu. A., “Regulyarnye integralnye uravneniya dlya vtoroi kraevoi zadachi v anizotropnoi teorii uprugosti”, Izv. RAN. MTT., 2005, no. 4, 17–26

[3] Prusov I. A., Termouprugie anizotropnye plastinki, BGU, Minsk, 1978, 200 pp. | MR

[4] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 511 pp. | MR | Zbl

[5] Bikchantaev I. A., “Kraevaya zadacha dlya odnorodnogo ellipticheskogo uravneniya s postoyannymi koeffitsientami”, Izv. vuzov. Matem., 1975, no. 6, 3–13 | MR | Zbl