Projection Regularization Algorithm for Solving Linear Algebraic System of Large Dimension
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 309-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

The iterative projection algorithm for solving ill-posed systems of linear algebraic equations is examined. This algorithm is based on transforming the regularized normal equations to the equivalent augmented regularized normal system of equations. The proposed algorithm can effectively solve ill-posed problems of large dimension.
Keywords: iterativ projection method, incorrect problems, regularized solution.
@article{VSGTU_2010_5_a38,
     author = {A. I. Zhdanov and A. A. Ivanov},
     title = {Projection {Regularization} {Algorithm} for {Solving} {Linear} {Algebraic} {System} of {Large} {Dimension}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {309--312},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a38/}
}
TY  - JOUR
AU  - A. I. Zhdanov
AU  - A. A. Ivanov
TI  - Projection Regularization Algorithm for Solving Linear Algebraic System of Large Dimension
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 309
EP  - 312
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a38/
LA  - ru
ID  - VSGTU_2010_5_a38
ER  - 
%0 Journal Article
%A A. I. Zhdanov
%A A. A. Ivanov
%T Projection Regularization Algorithm for Solving Linear Algebraic System of Large Dimension
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 309-312
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a38/
%G ru
%F VSGTU_2010_5_a38
A. I. Zhdanov; A. A. Ivanov. Projection Regularization Algorithm for Solving Linear Algebraic System of Large Dimension. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 309-312. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a38/

[1] Morozov V. A., “Algoritmicheskie osnovy metodov resheniya nekorrektno postavlennykh zadach”, Vychisl. metody i programmirovanie, 45 (2003), 130–141

[2] Zhdanov A. I., “Ob odnom chislenno ustoichivom algoritme resheniya sistem lineinykh algebraicheskikh uravnenii nepolnogo ranga”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2008, no. 1(16), 149–153 | DOI

[3] Kaczmarz S., “Angenäherte Auflösung von Systemen linearen Gleichunngen”, Bull. Acad. Polon. Sci. Lett. A, 35 (1937), 355–357 | Zbl

[4] Vasilchenko G. P., Svetlakov A. A., “Proektsionnyi algoritm resheniya sistem lineinykh algebraicheskikh uravnenii bolshoi razmernosti”, Zhurn. vychisl. matematiki i mat. fiziki, 20:1 (1980), 3–10 | MR | Zbl

[5] Ilin V. P., “Ob iteratsionnom metode Kachmazha i ego obobscheniyakh”, Sib. zhurn. industr. matem., 9:3 (2006), 39–49 | MR | Zbl